簡易檢索 / 詳目顯示

研究生: 莊于萱
Chuang, Yu-Hsuan
論文名稱: 矽膠透鏡製程開發應用於水下雷射白光照明模組
Development of Silicone Lens Process for Underwater Laser White Light Illumination Module Application
指導教授: 沈聖智
Shen, Sheng-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 151
中文關鍵詞: 製程開發技術矽膠透鏡TIR雷射白光水下照明矩形光型
外文關鍵詞: Process development technology, Silicone lens, TIR, Laser white light, Underwater illumination, Rectangular light pattern
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文整合雷射白光光源模組,開發一套矽膠透鏡製程技術,解決全內反射透鏡使用CNC車削、射出成型等方法無法加工尖角的問題,以應用於水下照明。其中,白光光源模組為利用藍光雷射結合黃色螢光粉組成反射式結構。TIR透鏡曲線根據幾何光學理論設計出自由曲面之折射面及反射面,來自光源小角度之光線通過折射面進行準直,大角度之光線通過反射面進行準直,並設計成矩形光型以滿足目標物所需之形狀,提升其照明效率及均勻性。再利用Python及Solidworks建構出模型,並運用光學軟體Tracepro進行模擬和優化,將模擬之最佳參數進行矽膠透鏡製程開發,並另外加工兩種不同反射層之矽膠透鏡進行後續實驗比較。最後針對水下目標物之應用,進行照度、明度(L*)及色差值(ΔE)分析來量化評估矽膠透鏡雷射白光燈具於水下照明與色彩辨識之能力。由實驗結果顯示,在小水槽或大水槽進行之照度及明度(L*)實驗,矽膠透鏡皆優於經過加工反射層後之烤漆及鍍膜,由於透鏡製程之表面粗糙度導致反射層的效率不佳,反而使光線被吸收,導致照明效率下降,分別高出烤漆1.8倍及高出鍍膜2.69倍。本論文所開發之矽膠透鏡能完整製作出尖角,改善傳統加工尖角變形所造成超過9.45%的光學效率損失,證實其建立水下照明燈具之可行性,為水下照明領域提供新型態的材料,以實現20m之長距離照明。

    This thesis integrates the laser white light source module and develops a set of silicone lens process technology to solve the problem that the total internal reflection lens cannot be machined with sharp corners by CNC turning, so as to be applied to underwater illumination. Wherein, the white light source module is a reflective structure composed of blue light laser combined with yellow phosphor. The refracting surface and reflective surface of the free-form surface are designed according to the geometrical optics theory for the TIR lens curve. The light from a small angle of the light source is collimated by the refracting surface, and the light from a large angle is collimated by the reflective surface. The designed into a rectangular light shape to meet the desired shape of the target, improve its illumination efficiency and uniformity. Then use Python and Solidworks to build a model and use Tracepro to simulate and optimize. Use the best parameters of the simulation to develop the silicone lens process and machine two different reflective layers of silicone lenses for follow-up experiments and comparisons. The experimental results show that the illuminance and L* experiments conducted in a small tank or a towing tank, the silicone lens is 1.8 times higher than that of painting and 2.69 times higher than that of coating. The silicone lens developed in this thesis can completely produce sharp corners and improve the optical efficiency loss of more than 9.45% caused by the deformation of traditional processing sharp corners. It has confirmed the feasibility of establishing underwater illumination fixtures, providing new types of materials for the underwater illumination field to achieve long-distance illumination of 20m.

    中文摘要 I Extended Abstract II 致謝 XI 目錄 XII 圖目錄 XV 表目錄 XXI 符號說明 XXIII 第一章 緒論 1 1-1 前言與動機 1 1-2 研究方法 4 1-3 論文架構 6 第二章 文獻回顧 8 2-1 照明相關技術 8 2-1-1 LED照明 8 2-1-2 雷射照明 10 2-2 YAG:Ce螢光粉類型及特性 14 2-3 透鏡類型 18 2-3-1 菲涅爾透鏡 18 2-3-2 非球面透鏡 20 2-3-3 自由曲面透鏡 22 2-3-4 全內反射透鏡 25 2-4 尖角加工表面品質 29 2-5 水下光能量衰減理論 31 2-5-1 水下光場分析 31 2-5-2 不同水體之衰減特性 32 第三章 矽膠透鏡設計與模擬 35 3-1 雷射白光光源選用 35 3-2 曲線設計 37 3-2-1 折射面設計 38 3-2-2 反射面設計 40 3-3 模型建構 42 3-4 模擬驗證 44 3-4-1 尖角光學誤差 51 第四章 矽膠透鏡製程開發與水下實驗設計 55 4-1 模具積層製造 55 4-2 模具研磨拋光 56 4-3 矽膠溶液調配與灌注 57 4-4 矽膠透鏡成形與脫模 59 4-5 矽膠透鏡薄膜沉積 60 4-6 水下實驗設計 61 4-6-1 實驗設備 61 4-6-2 小水槽實驗環境介紹 65 4-6-3 大水槽實驗環境介紹 66 第五章 實驗結果與討論 68 5-1 空氣實驗結果 68 5-2 小水槽實驗結果 72 5-2-1 三種透鏡之照度及光譜變化 72 5-2-2 色卡眀度分析 79 5-2-3 色卡色差值分析 87 5-2-4 色塊綜合比較結果分析 100 5-3 大水槽實驗結果 105 5-3-1 三種透鏡之照度變化 105 5-3-2 色卡眀度分析 109 5-3-3 色卡色差值分析 119 5-3-4 色塊綜合比較結果分析 136 第六章 結論與未來展望 145 6-1 結論 145 6-2 未來展望 148 參考文獻 149

    [1]A. De Almeida, B. Santos, B. Paolo and M. Quicheron, “Solid state lighting review – Potential and challenges in Europe,” Renewable and Sustainable Energy Reviews, Vol. 34, pp. 30-48, 2014.
    [2]J. J. Wierer Jr., J. Y. Tsao and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser & Photonics Reviews, Vol. 7, No. 6, pp. 963-993, 2013.
    [3]A. Amjad, Q. Li, H. Y. Fu and S. Mehdi, “Blue Laser Diode-Based Visible Light Communication and Solid-State Lighting,” 2021.
    [4]A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Optics Express, Vol. 19, No. S4, pp. A982-A990, 2011.
    [5]Y. Ma, M. Wang and X. Luo, “A Comparative Study of Reflective and Transmissive Phosphor-converted Laser-based White Lighting,” 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 773-777, 2018.
    [6]S. MASUI, T. YAMAMOTO and S.-I. NAGAHAMA, “A White Light Source Excited by Laser Diodes,” Electronics and Communications in Japan, Vol. 98, No. 5, pp. 23-27, 2015.
    [7]Audi, “Audi R8 LMX,” 2014.
    [8]BMW, “BMW i8,” 2014.
    [9]R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser & Photonics Reviews, Vol. 8, No. 1, pp. 158-164, 2014.
    [10]S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara and K. Shimamura, “Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs,” Materials Research Express, Vol. 2, No. 5, pp. 055503, 2015.
    [11]T. W. Kang, K. W. Park, J. H. Ryu, S. G. Lim, Y. M. Yu and J. S. Kim, “Strong thermal stability of Lu3Al5O12:Ce3+ single crystal phosphor for laser lighting,” Journal of Luminescence, Vol. 191, pp. 35-39, 2017.
    [12]M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Optics Express, Vol. 24, No. 2, pp. A215-A221, 2016.
    [13]J. Yu, S. Si, Y. Liu, X. Zhang, Y. Cho, Z. Tian, R. Xie, H. Zhang, Y. Li and J. Wang, “High-power laser-driven phosphor-in-glass for excellently high conversion efficiency white light generation for special illumination or display backlighting,” Journal of Materials Chemistry C, Vol. 6, No. 30, pp. 8212-8218, 2018.
    [14]P. Zheng, S. Li, L. Wang, T.-L. Zhou, S. You, T. Takeda, N. Hirosaki and R.-J. Xie, “Unique Color Converter Architecture Enabling Phosphor-in-Glass (PiG) Films Suitable for High-Power and High-Luminance Laser-Driven White Lighting,” ACS Applied Materials & Interfaces, Vol. 10, No. 17, pp. 14930-14940, 2018.
    [15]M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS Journal of Solid State Science and Technology, Vol. 2, No. 2, pp. R3168-R3176, 2012.
    [16]C. Cozzan, G. Lheureux, N. O’Dea, E. E. Levin, J. Graser, T. D. Sparks, S. Nakamura, S. P. DenBaars, C. Weisbuch and R. Seshadri, “Stable, Heat-Conducting Phosphor Composites for High-Power Laser Lighting,” ACS Applied Materials & Interfaces, Vol. 10, No. 6, pp. 5673-5681, 2018.
    [17]C. J. Li, Y. Li, X. Gao and C. V. Duong, “Ultra-precision machining of Fresnel lens mould by single-point diamond turning based on axis B rotation,” The International Journal of Advanced Manufacturing Technology, Vol. 77, pp. 907-913, 2015.
    [18]H. Vu, N. M. Kieu, D. T. Gam, S. Shin, T. Q. Tien and N. H. Vu, “Design and Evaluation of Uniform LED Illumination Based on Double Linear Fresnel Lenses,” Applied Sciences, Vol. 10, No. 9, pp. 3257, 2020.
    [19]R. Schuhmann, “Description of aspheric surfaces,” Advanced Optical Technologies, Vol. 8, No. 3-4, pp. 267-278, 2019.
    [20]S. Donati, W.-H. Cheng, C.-N. Liu, H.-K. Shih and Z. Pei, “Embedding LiDAR and smart laser headlight in a compact module for autonomous driving,” OSA Continuum, Vol. 4, No. 5, pp. 1587-1597, 2021.
    [21]Y. Ma and X. Luo, “Small-divergent-angle uniform illumination with enhanced luminance of transmissive phosphor-converted white laser diode by secondary optics design,” Optics and Lasers in Engineering, Vol. 122, pp. 14-22, 2019.
    [22]D. Ma, Z. Feng and R. Liang, “Freeform illumination lens design using composite ray mapping,” Applied Optics, Vol. 54, No. 3, pp. 498-503, 2015.
    [23]Z. Zhao, H. Zhang, S. Liu and X. Wang, “Effective freeform TIR lens designed for LEDs with high angular color uniformity,” Applied Optics, Vol. 57, No. 15, pp. 4216-4221, 2018.
    [24]A. Terao, S. G. Daroczi, S. J. Coughlin, W. P. Mulligan, R. M. Swanson, M. Hernandez, P. Benitez and J. C. Minano, “New developments on the flat-plate micro-concentrator module,” 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of, Vol. 1, pp. 861-864 Vol.1, 2003.
    [25]O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez and F. Munoz, “Review of SMS design methods and real world applications,” Optical Science and Technology, the SPIE 49th Annual Meeting, Vol. 5529, 2004.
    [26]M. Mukaida and J. Yan, “Fabrication of Hexagonal Microlens Arrays on Single-Crystal Silicon Using the Tool-Servo Driven Segment Turning Method,” Micromachines, Vol. 8, No. 11, pp. 323, 2017.
    [27]A. McCarthy, J. Romero-Vivas, C. O. Hara, N. Rebrova, L. Lewis and S. P. Hegarty, “LED-Based Collimating Line-Light Combining Freeform and Fresnel Optics,” IEEE Photonics Journal, Vol. 10, No. 6, pp. 1-13, 2018.
    [28]J. Sticklus, M. Hieronymi and P. A. Hoeher, “Effects and Constraints of Optical Filtering on Ambient Light Suppression in LED-Based Underwater Communications,” Sensors, Vol. 18, No. 11, pp. 3710, 2018.
    [29]X. Ruan, H. Zhang, W. Zhao, X. Wang, X. Li and Y. Guo, “Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution over Seawater Channel,” Applied Sciences, Vol. 9, No. 22, pp. 4956, 2019.
    [30]M. Fan, Y. Zhang, X. Xie, Y. Chen, D. Pan and S. Yan, “Optical system design of LED compact underwater illumination lamp,” 2022.
    [31]D. Pascale, “RGB coordinates of the Macbeth ColorChecker,” 2006.

    無法下載圖示 校內:2027-07-14公開
    校外:2027-07-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE