| 研究生: |
黃浩銘 Wong, Kun-Ming |
|---|---|
| 論文名稱: |
厭氧生物降解N-Methylpyrrolidone (NMP)代謝路徑與微生物生態 Anaerobic Biodegradation of N-Methylpyrrolidone (NMP): Metabolic Pathway and Microbial Community |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | N-甲基吡咯烷酮 、厭氧生物處理 、NMP代謝中間產物 、次世代定序 |
| 外文關鍵詞: | N-methylpyrrolidone, anaerobic biological treatment, NMP metabolite, NGS |
| 相關次數: | 點閱:153 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
N-甲基吡咯烷酮(NMP)為一種在半導體產業被廣泛應用的有機溶劑。NMP能夠使用好氧或是厭氧生物處理方式進行處理,而一般的研究著重於好氧處理。厭氧生物處理NMP相對來說是一種較為新穎的方式。因此,本研究的目的是為了評估NMP在厭氧情況下的降解可行性。此外,由於較少相關資料,NMP在厭氧情況下的降解途徑以及厭氧情況下的NMP降解菌群研究也是本研究的目的之一。在最高為375 mg/L-day的有機負荷下,CSTR的操作可以達到90%以上的COD去除效率。然而在有機負荷提升至400 mg/L-day以上時會導致處理效率下降。AFMBR能夠在有機負荷為325 mg/L-day 且NMP的負荷在100 mg/L-day的情況下達到平均95%以上的COD去除效率。經過批次實驗的測試後證實了高濃度的NMP會對其降解造成抑制,而其抑制模式亦符合Haldane equation。在一個進行甲烷菌抑制的批次實驗顯示甲烷菌在NMP的厭氧降解途徑中扮演重要的角色,抑制甲烷菌所導致甲基還原酶的基質累積或許會對NMP降解菌群形成抑制作用。從次世代定序的結果來看抑制甲烷菌亦會使其微生物族群產生變化。在降解途徑的分析中,抑制甲烷菌會導致乙酸的累積,並顯示此污泥中至少含有3種不同的微生物族群。
N-methylpyrrolidone is a common organic solvent in the semiconductor industry wastewater, which can be treated by either aerobic or anaerobic biological processes. Compare to the typical way, which is the aerobic biological treatment, the anaerobic treatment is a novel process on the NMP biodegradation. Therefore, the purpose of this study is to evaluate and improve the removal efficiency of NMP in CSTR and AFMBR under anaerobic conditions. The metabolic pathway of NMP and the microbial community of the NMP degrading microorganism were also the aims of this study. The CSTR can reach an average of 90% removal efficiency in its operation period with a 375 mg/L-day as maximum OLR. An inhibition phenomenon happened when the OLR is above 400 mg/L-day. The AFMBR can get an average of 95% removal efficiency with a 325 mg/L-day OLR and 100 mg/L-day NMP loading rate. A series of batch experiments proved that a high concentration of NMP would inhibit its degradation. The inhibition batch experiment showed that methanogens might play an important role in the NMP metabolic pathway. The accumulation of methylreductase’s substrate may inhibit the NMP degrading microorganism. Various of volatile fatty acids were detected as a metabolite.
Åkesson, B., & Jönsson, B. A. g. (1997). Major Metabolic Pathway for N-Methyl-2-Pyrrolidone in Humans. Drug Metabolism and Disposition, 25(2).
APHA, AWWA, & WEF. (2017). Standard Methods for the Examination of Water and Wastewater, American Public Health Association. https://doi.org/10.2105 / SMWW.2882.103
Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T., Siegrist, H., & Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology : A Journal of the International Association on Water Pollution Research, 45(10), 65–73. https://doi.org/10.2166/wst.2002.0292
Beaulieu, H. J., & Schmerber, K. R. (1991). M-pyroltm(Nmp) use in the microelectronics industry. Applied Occupational and Environmental Hygiene, 6(10), 874. https://doi.org/10.1080/1047322X.1991.10387980
Blanco, A., & Blanco, G. (2017). Metabolism. In Medical Biochemistry (pp. 275–281). Elsevier. https://doi.org/10.1016/B978-0-12-803550-4.00013-6
Blow, N. (2008). Metabolomics: Biochemistry’s new look. In Nature (Vol. 455, Issue 7213, pp. 697–700). Nature Publishing Group. https://doi.org/10.1038/455697a
Cai, S., Cai, T., Liu, S., Yang, Q., He, J., Chen, L., & Hu, J. (2014). Biodegradation of N-Methylpyrrolidone by Paracoccus sp. NMD-4 and its degradation pathway. International Biodeterioration and Biodegradation, 93, 70–77. https://doi.org/10.1016/j.ibiod.2014.04.022
Chow, S. T., & Ng, T. L. (1983). The biodegradation of N-methyl-2-pyrrolidone in water by sewage bacteria. Water Research, 17(1), 117–118. https://doi.org/10.1016/0043-1354(83)90292-0
Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258), 561–563. https://doi.org/10.1038/227561a0
Florentino, A. P., Brienza, C., Stams, A. J. M., & Sánchez-Andrea, I. (2016). Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. International Journal of Systematic and Evolutionary Microbiology, 66(3), 1249–1253. https://doi.org/10.1099/IJSEM.0.000866
Gujer, W., & Zehnder, A. J. B. (1983). Conversion processes in anaerobic digestion. Water Science and Technology, 15(8–9), 127–167. https://doi.org/10.2166/wst.1983.0164
Kayhanian, M. (1994). Performance of a high-solids anaerobic digestion process under various ammonia concentrations. Journal of Chemical Technology AND Biotechnology, 59(4), 349–352. https://doi.org/10.1002/jctb.280590406
KUGELMAN, I. J., & CHIN, K. K. (1971). Toxicity, Synergism, and Antagonism in Anaerobic Waste Treatment Processes (pp. 55–90). https://doi.org/10.1021/ba-1971-0105.ch005
Leibeling, S., Schmidt, F., Jehmlich, N., Bergen, M. von, Müller, R. H., & Harms, H. (2010). Declining Capacity of Starving Delftia acidovorans MC1 to Degrade Phenoxypropionate Herbicides Correlates with Oxidative Modification of the Initial Enzyme. Environmental Science and Technology, 44(10), 3793–3799. https://doi.org/10.1021/ES903619J
Lin, C. Y., Noike, T., Sato, K., & Matsumoto, J. (1987). Temperature characteristics of the methanogenesis process in anaerobic digestion. Water Science and Technology, 19(1–2), 299–310. https://doi.org/10.2166/wst.1987.0210
Loh, C. H., Wu, B., Ge, L., Pan, C., & Wang, R. (2018). High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: A feasibility study. Chemosphere, 194, 534–542. https://doi.org/10.1016/j.chemosphere.2017.12.013
May, G. S., & Spanos, C. J. (2006). Fundamentals of Semiconductor Manufacturing and Process Control. In Fundamentals of Semiconductor Manufacturing and Process Control. John Wiley & Sons, Inc. https://doi.org/10.1002/0471790281
Rittmann, B. E. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2), 203–212. https://doi.org/10.1002/bit.21875
Rittmann, B. E., & McCarty, P. L. (2001). ENVIRONMENTAL BIOTECHNOLOGY: PRINCIPLES AND APPLICATIONS. McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9781260440591
Ružička, J., Fuskova, J., Křížek, K., Měrková, M., Černotová, A., & Smělík, M. (2016). Microbial degradation of N-methyl-2-pyrrolidone in surface water and bacteria responsible for the process. Water Science and Technology, 73(3), 643–647. https://doi.org/10.2166/wst.2015.540
SIA. (2017). SIA Comments to EPA on N-Methylpyrrolidone.
Smith, C. J., & Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 67(1), 6–20. https://doi.org/10.1111/j.1574-6941.2008.00629.x
Smith, M. R. (1983). Reversal of 2-bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp. Journal of Bacteriology, 156(2), 516–523. https://doi.org/10.1128/jb.156.2.516-523.1983
Solís-González, C. J., Domínguez-Malfavón, L., Vargas-Suárez, M., Gaytán, I., Cevallos, M. Á., Lozano, L., Cruz-Gómez, M. J., & Loza-Tavera, H. (2018). Novel metabolic pathway for N-methylpyrrolidone degradation in Alicycliphilus sp. strain BQ1. Applied and Environmental Microbiology, 84(1). https://doi.org/10.1128/AEM.02136-17
Taiwan Semiconductor Industry Association. (2017). Overview on Taiwan Semiconductor Industry, 2017 Edition. 1–31. http://www.tsia.org.tw/en/publications_list.php (accessed September 23, 2014)
Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic archaea: Ecologically relevant differences in energy conservation. In Nature Reviews Microbiology (Vol. 6, Issue 8, pp. 579–591). Nature Publishing Group. https://doi.org/10.1038/nrmicro1931
Wang, J., Liu, X., Jiang, X., Zhang, L., Hou, C., Su, G., Wang, L., Mu, Y., & Shen, J. (2019). Nitrate stimulation of N-Methylpyrrolidone biodegradation by Paracoccus pantotrophus: Metabolite mechanism and Genomic characterization. Bioresource Technology, 294, 122185. https://doi.org/10.1016/j.biortech.2019.122185
Weaver, R. F. (2002). Molecular biology. In McGraw-Hill.
Zhang, B., Zhang, L. L., Zhang, S. C., Shi, H. Z., & Cai, W. M. (2005). The influence of pH hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environmental Technology, 26(3), 329–340. https://doi.org/10.1080/09593332608618563
Zhang, L. li, He, D., Chen, J. meng, & Liu, Y. (2010). Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. Journal of Hazardous Materials, 179(1–3), 875–882. https://doi.org/10.1016/J.JHAZMAT.2010.03.086
Zhou, Z., Meng, Q., & Yu, Z. (2011). Effects of Methanogenic Inhibitors on Methane Production and Abundances of Methanogens and Cellulolytic Bacteria in In Vitro Ruminal Cultures. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 77(8), 2634–2639. https://doi.org/10.1128/AEM.02779-10
吳青樺 (2018)。以厭氧流體化床薄膜生物反應器處理含二甲基亞砜之晶圓封測有機廢水之研究。研究成果學位論文。
丘恬鳳 (2018)。含NMP半導體廢水在好氧,缺氧及厭氧條件下之生物可降解性評估之研究。研究成果學位論文。
潘家慶 (2019)。含N-甲基吡咯烷酮廢水之生物處理評估研究。研究成果學位論文。
校內:2026-08-24公開