| 研究生: |
苟顥書 Kou, Hao-Shu |
|---|---|
| 論文名稱: |
應用技術分析提升GARCH模型對於股票指數波動度之預測能力 Using technical rules to enhance the predictability of the standard GARCH model for the volatility of stock indices |
| 指導教授: |
顏盟峯
Yen, Meng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 波動度預測 、GARCH 、技術分析 、Step-SPA(k) 、股票指數波動度 、實現波動率 |
| 外文關鍵詞: | Volatility forecasting, GARCH, Technical rules, Step-SPK(k), Realized volatility, Volatility of stock index |
| 相關次數: | 點閱:85 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主要目的是在探討技術分析能否改進一般化自我迴歸條件異質變異數(GARCH(1,1))模型對股價指數波動度的預測能力。研究採用四大技術指標:濾嘴法則、支撐與壓力、通道突破、移動平均共1,107條技術規則,並分別應用於股價指數的實現波動率產生訊號,探討以技術分析訊號擴充後的GARCH(1,1)模型能否提升基準模型(GARCH(1,1))的波動度預測力;並以平均絕對誤差(MAE)與均方誤差(MSE)為評比基準,利用Hsu, Kuan, and Yen (2014)的Step-SPA(k)檢定法來降低資料窺探偏誤。本研究以2008年至2012年與1993年至2012年的道瓊工業平均指數資料為樣本,結果發現以技術規則分析實現波動率訊號對GARCH(1,1)模型預測股價指數波動率能力並無顯著提升之效果。
The main purpose of this study is to explore whether technical analysis can improve the predictability of Generalized Autoregressive Conditional Heteroscedasticity (GARCH(1,1)) for the volatility of stock index. Four technical analysis categories, filter rule, support and resistance, channel breakout, and moving average, were applied, creating 1,107 rules in total, and the rules were used individually on the realized volatility of stock index to obtain signals. We discuss if the GARCH(1,1)-augmented model with technical analysis signals can provide better predictability for stock index volatility than the benchmark model(GARCH(1,1)). Employing the mean absolute error (MAE) and mean squared error (MSE) as performance measure, we conduct Hsu, Hsu and Yen’s (2014) Step-SPA(k) test to control for the data snooping bias. Dow Jones Industrial Average data from 2008 to 2012 and 1993 to 1992 are used as the sample. Our results showed that analyzing realized volatility signals with technical rules does not lead to a significant improvement in the predictability of the GARCH(1,1) model for volatility of stock indices.
Alexander, S.S. (1961) “Price movements in speculative markets: Trends or random walks” Industrial Management Review, 2(2), 7-26.
Andersen, T.G., and Bollerslev, T. (1998) “Answering the skeptics: Yes, standard volatility models do provide accurate forecasts” International economic review, 39(4), 885-905.
Andersen, T.G., Bollerslev, T., and Cai, J. (2000) “Intraday and interday volatility in the Japanese stock market” Journal of International Financial Markets, Institutions and Money, 10(2), 107-130.
Andersen, T.G., Bollerslev, T., Diebold, F.X., and Labys, P. (2001) “The distribution of realized exchange rate volatility” Journal of the American statistical association, 96(453), 42-55.
Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (2003) “Modeling and Forecasting Realized Volatility” Econometrica, 71(2), 529-626.
Andersen, T.G., Bollerslev, T., and Meddahi, N. (2011) “Realized volatility forecasting and market microstructure noise” Journal of Econometrics, 160(1), 220-234.
Ashley, R.A. and Patterson, D.M. (2010) “A test of the GARCH (1, 1) specification for daily stock returns” Macroeconomic Dynamics, 14(1), 137-144.
Awartani, B.M. and Corradi, V. (2005) “Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries” International Journal of Forecasting, 21(1), 167-183.
Bollerslev, T. (1986) “Generalized autoregressive conditional heteroskedasticity” Journal of econometrics, 31(3), 307-327.
Bollerslev, T. (1987) “A conditionally heteroskedastic time series model for speculative prices and rates of return” The review of economics and statistics, 69(3), 542-547.
Brock, W., Lakonishok, J., and LeBaron, B. (1992) “Simple technical trading rules and the stochastic properties of stock returns” Journal of finance, 47(5), 1731-1764.
Clark, T.E., and McCracken, M.W. (2009) “Improving forecast accuracy by combining recursive and rolling forecasts” International Economic Review, 50(2), 363-395.
Efron, B. (1979) “Bootstrap methods: another look at the jackknife” The annals of Statistics, 7(1), 1-26.
Engle, R.F. (1982) “Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation” Econometrica, 50(4), 987-1008.
Fama, E.F. (1970) “Efficient capital markets: A review of theory and empirical work” The journal of Finance, 25(2), 383-417.
Franses, P.H. and Van Dijk, D. (1996) “Forecasting stock market volatility using (nonlinear) GARCH models” Journal of Forecasting, 15(3), 229-235.
Han, C.H. (2013) “Volatility problem in financial mathematics” Mathmedia, 37(1), 27-40. (In Chinese)
Hansen, P.R. (2005) “A test for superior predictive ability” Journal of Business and Economic Statistics, 23(4), 365-380.
Hansen, P.R. and Lunde, A. (2005) “A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?” Journal of applied econometrics, 20(7), 873-889.
Hsu, P.H., Kuan, C.M. (2005) “Reexamining the profitability of technical analysis with data snooping checks” Journal of Financial Econometrics 3(4), 606-628.
Hsu, P.H., Hsu, Y.C. and Kuan, C.M. (2010) “Testing the predictive ability of technical analysis using a new stepwise test without data-snooping bias” Journal of Empirical Finance, 17(3), 471-484.
Hsu, Y.C., Kuan C.M. and Yen, M.F. (2014) “A generalized stepwise procedure with improved power for multiple inequalities testing” Journal of Financial Econometrics, 12(4), 730-755
Hwang, E. and Shin, D.W. (2013) “Stationary bootstrapping realized volatility” Statistics & Probability Letters, 83(9), 2045-2051.
Jensen, M.C. and Benington, G.A. (1970) “Random walks and technical theories: Some additional evidence” The Journal of Finance, 25(2), 469-482.
Lai, T.L. and Xing, H. (2008) “Statistical models and methods for financial markets” Springer, New York, 282-285.
Liu, H.C. and Hung, J.C. (2010) “Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models” Expert Systems with Applications, 37(7), 4928-4934.
Loudon, G.F., Watt, W.H. and Yadav, P.K. (2000) “An empirical analysis of alternative parametric ARCH models” Journal of Applied Econometrics, 15(2), 117–136.
Lu, Y., and Chen, W. (2011) “Unreliable inference for business and economic event studies based on variance dummy variable in a GARCH regression model” Journal of Applied Business and Economics, 12(5), 45-53.
Mandelbrot, B.B. (1963) “The variation of certain speculative prices” The Journal of Business, 36(4), 394-419.
Pesaran, M.H., Timmermann, A. (2007) “Selection of estimation window in the presence of breaks” Journal of Econometrics, 137(1), 134–161.
Politis, D.N., and Romano, J.P. (1994) “The stationary bootstrap” Journal of the American Statistical association, 89(428), 1303-1313.
Romano, J.P. and Wolf, M. (2005) “Stepwise Multiple Testing as Formalized Data Snooping” Econometrica, 73(4), 1237–1282.
Romano, J.P. and Wolf, M. (2007) “Control of Generalized Error Rates in Multiple Testing” Annals of Statistics, 35(4), 1378–1408.
Sullivan, R., Timmermann, A. and White, H. (1999) “Data-snooping, technical trading rule performance, and the bootstrap” Journal of Finance, 54(5), 1647-1691.
Tsay, R.S. (2014) “An introduction to analysis of financial data with R” John Wiley & Sons, New Jersey, 308-309.
Xie, H. and Li, J. (2010) “Intraday volatility analysis on S&P 500 stock index future” International Journal of Economics and Finance, 2(2), 26-34.
White, H. (2000) “A reality check for data snooping” Econometrica, 68(5), 1097-1126.
Wyckoff, R.D. (1910) “Studies in Tape Reading” Fraser Publishing Company, Burlington, Vermont.