| 研究生: |
林博文 Lin, Bo-Wen |
|---|---|
| 論文名稱: |
估算個人血液動力參數之模型本位識別方法驗證 Validation of Model-based Identification Methods for Estimating Individual Hemodynamic Parameters |
| 指導教授: |
陸鵬舉
Lu, Pong-Jeu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 動脈硬度 、血液動力逆問題 、非侵入性評估 |
| 外文關鍵詞: | Arterial stiffness, Hemodynamic inverse problem, Non-invasive assessment |
| 相關次數: | 點閱:154 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
評估心血管特徵和相連的終端器官健康狀態,目前臨床仍然缺乏可靠和非侵入式的診斷工具。本論文旨在發展一套識別程序,以一維波傳播模型為建構基礎,來估算個人的血液動力參數。識別方法解決了血液動力學的逆問題,得到臨床上有興趣的模型參數估算值。動脈硬度(Arterial Stiffness)、無壓力腔半徑(Stress-free Lumen Radius)以及末端區塊參數(Terminal Lumped Parameters),皆由本方法估算獲得。
參數估計程序使用臨床可量測數據作為系統的輸入和觀察,基於不考慮數據誤差和測量不確性。識別方法包含一維流狀態估測和基因演算參數搜尋法,因此物理參數和狀態估測皆同時包括在識別程序中。採用差分進化法(Differential Evolution)來優化模型參數,並以平行運算來加速計算時間。為了能應付在體內獲得的不同測量數據,本研究提出和建構三種識別方法,分別使用壓力-流量(pq)、壓力-速度(pU) 、直徑-速度(DU)的波形作為系統輸入/測量的數據。
在一維的血液動力模擬中,本研究已發展出高解析Roe數值法(Roe's Scheme)及特徵邊界條件(Characteristic Boundary Conditions),來求解存在於心血管流問題中的複雜波反射現象。使用模擬的數值或臨床的數據來做驗證,分別估測局部血管和末端器官參數,其目的在於評估本方法的可行性和準確性。
結果顯示這三個識別方法是準確和可行的,其中DU法在逐點測定上特別準確,延伸了血管超音波檢查(Vascular Ultrasonography)的可用性。再者,使用體內所測量到的數據,以pq法估算個人的手臂動脈網絡參數,得到可接受的匹配結果。此外,使用肱動脈壓力/血管壁擴張波形來識別末端器官參數,其可行性已經實現。這些初步結果顯示,在此模型本位識別方法的助益下,使用週邊動脈可測量的數據,以非侵入性的方式來診斷個人器官的健康狀態,在理論上是可行的。
A reliable, non-invasive diagnostic tool for assessing cardiovascular characteristics and/or the connected end organ health state is still lacking. The present work aims at developing an identification procedure for estimating individual hemodynamic parameters based on a one-dimensional (1-D) tree-like vascular flow model. With the use of clinically available measurements, the proposed identification methods solve the hemodynamic inverse problem associated with the modeled vascular system, yielding the estimates of the unknown model parameters that are of clinical interest. For the present vascular diagnostic method, the arterial stiffness and stress-free lumen radius as well as the terminal lumped resistances and compliance that reflect the health state of the connected end organs were estimated.
The present parameter estimation procedure uses measurable clinic data as system input and observation functions. Sensor data errors and measurement uncertainties are not considered. The measurements obtained at sites of interest are assumed noise-free and mutually compatible. The present identification procedure consists of a 1-D flow state estimator and a genetic parameter search algorithm, and thus both physical parameters and state estimation are included simultaneously in the identification procedure. Differential evolution (DE), a global genetic search algorithm, has been employed as the parameter optimizer. Parallel computing was applied to accelerate the speed of DE optimization. To cope with different data measurements obtained in vivo, identification methods that use pressure-flow rate (pq), pressure-velocity (pU), and diameter-velocity (DU) waveforms as system input/measurement pair were proposed and constructed.
The present model-based identification algorithm was constructed and validated using a numerical 1-D hemodynamic simulation code which simulates pulsatile blood flow circulating in human arterial system with high-fidelity. In this simulation code, a high-resolution Roe’s scheme augmented by characteristics-based boundary condition treatments were developed to solve the complex wave reflection and re-reflection phenomena prevailing in the tree-like vascular network. Validations were performed on estimating regional vascular and terminal end-organ parameters, respectively, using both numerical and clinical data pairs to assess the feasibility and accuracy of the proposed identifier. The results show that all the three pq, pU and DU identification methods are accurate and feasible. For point-wise vascular diagnosis, the DU method has been particularly accurate, which may potentially extend the current usability of vascular ultrasonography onto a new horizon of evaluating local arterial stiffness non-invasively. For identifying individual parameters pertaining to a segmental arterial network of an arm, agreed hemodynamic waveforms reconstructed by the pq method were compared favorably to the in vivo measurements. Furthermore, the feasibility of identifying end-organ hemodynamic parameters using brachial (peripheral) pressure/wall distension waveforms was demonstrated. These preliminary successes indicate that, with the aid of model-based identification, a non-invasive, individual-based diagnosis of the organ health states using measurable observations at peripheral arteries is theoretically possible.
[1] Cecelja, M., and Chowienczyk, P., “Dissociation of Aortic Pulse Wave Velocity with Risk Factors for Cardiovascular Disease Other Than Hypertension a Systematic Review,” Hypertension, vol. 54, no. 6, pp. 1328-1336, 2009.
[2] Fernandes, V. R. S., Polak, J. F., Cheng, S., Rosen, B. D., Carvalho, B., Nasir, K., McClelland, R., Hundley, G., Pearson, G., and O’Leary, D. H., “Arterial Stiffness Is Associated with Regional Ventricular Systolic and Diastolic Dysfunction the Multi-Ethnic Study of Atherosclerosis,” Arterioscler. Thromb. Vasc. Biol., vol. 28, no. 1, pp. 194-201, 2008.
[3] Laurent, S., and Boutouyrie, P., “Recent Advances in Arterial Stiffness and Wave Reflection in Human Hypertension,” Hypertension, vol. 49, no. 6, pp. 1202-1206, 2007.
[4] Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I., Struijker-Boudier, H., and European Network, N.-i., “Expert Consensus Document on Arterial Stiffness: Methodological Issues and Clinical Applications,” Eur. Heart J., vol. 27, no. 21, pp. 2588-2605, 2006.
[5] Safar, M. E., Levy, B. I., and Struijker-Boudier, H., “Current Perspectives on Arterial Stiffness and Pulse Pressure in Hypertension and Cardiovascular Diseases,” Circulation, vol. 107, no. 22, pp. 2864-2869, 2003.
[6] Boutouyrie, P., Tropeano, A. I., Asmar, R., Gautier, I., Benetos, A., Lacolley, P., and Laurent, S., “Aortic Stiffness Is an Independent Predictor of Primary Coronary Events in Hypertensive Patients - a Longitudinal Study,” Hypertension, vol. 39, no. 1, pp. 10-15, 2002.
[7] Van Bortel, L., Struijker-Boudier, H. A. J., and Safar, M. E., “Pulse Pressure, Arterial Stiffness, and Drug Treatment of Hypertension,” Hypertension, vol. 38, no. 4, pp. 914-921, 2001.
[8] Laurent, S., Boutouyrie, P., Asmar, R., Gautier, I., Laloux, B., Guize, L., Ducimetiere, P., and Benetos, A., “Aortic Stiffness Is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients,” Hypertension, vol. 37, no. 5, pp. 1236-1241, 2001.
[9] Safar, M., “Therapeutic Trials and Large Arteries in Hypertension,” Am. Heart J., vol. 115, no. 3, pp. 702-710, 1988.
[10] Stergiopulos, N., Young, D. F., and Rogge, T. R., “Computer Simulation of Arterial Flow with Applications to Arterial and Aortic Stenoses,” J. Biomech., vol. 25, no. 12, pp. 1477-88, 1992.
[11] Avolio, A. P., “Multi-Branched Model of the Human Arterial System,” Med. Biol. Eng. Comput., vol. 18, no. 6, pp. 709-18, 1980.
[12] Westerhof, N., Bosman, F., De Vries, C. J., and Noordergraaf, A., “Analog Studies of the Human Systemic Arterial Tree,” J. Biomech., vol. 2, no. 2, pp. 121-43, 1969.
[13] Zenker, S., Rubin, J., and Clermont, G., “From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses,” Plos Computational Biology, vol. 3, no. 11, pp. 2072-2086, 2007.
[14] Quick, C. M., Young, W. L., and Noordergraaf, A., “Infinite Number of Solutions to the Hemodynamic Inverse Problem,” Am. J. Physiol. Heart Circ. Physiol., vol. 280, no. 4, pp. H1472-H1479, 2001.
[15] Wang, S.-H., and Yang, S.-Z., The Pulse Classic: A Translation of the Mai Jing: Blue Poppy Press, 1997.
[16] Wang, Y. Y. L., Hsu, T. L., Jan, M. Y., and Wang, W. K., “Theory and Applications of the Harmonic Analysis of Arterial Pressure Pulse Waves,” Journal of Medical and Biological Engineering, vol. 30, no. 3, pp. 125-131, 2010.
[17] Lu, W. A., Wang, Y. Y. L., and Wang, W. K., “Pulse Analysis of Patients with Severe Liver Problems - Studying Pulse Spectrums to Determine the Effects on Other Organs,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, no. 1, pp. 73-75, 1999.
[18] Wang, Y. Y. L., Chang, S. L., Wu, Y. E., Hsu, T. L., and Wang, W. K., “Resonance - the Missing Phenomenon in Hemodynamics,” Circulation Research, vol. 69, no. 1, pp. 246-249, 1991.
[19] Caro, C., Pedley, T., Schroter, R., and Seed, W., The Mechanics of the Circulation, Oxford University Press, Oxford, G.B, 1978.
[20] Valdez-Jasso, D., Haider, M. A., Banks, H. T., Santana, D. B., German, Y. Z., Armentano, R. L., and Olufsen, M. S., “Analysis of Viscoelastic Wall Properties in Ovine Arteries,” IEEE Trans. Biomed. Eng., vol. 56, no. 2, pp. 210-219, 2009.
[21] Langewouters, G., Wesseling, K., and Goedhard, W., “The Static Elastic Properties of 45 Human Thoracic and 20 Abdominal Aortas in Vitro and the Parameters of a New Model,” J. Biomech., vol. 17, no. 6, pp. 425-435, 1984.
[22] Bergel, D., “The Static Elastic Properties of the Arterial Wall,” J. Physiol., vol. 156, no. 3, pp. 445, 1961.
[23] Ku, D. N., “Blood Flow in Arteries,” Annu. Rev. Fluid Mech., vol. 29, pp. 399-434, 1997.
[24] Tardy, Y., Meister, J. J., Perret, F., Brunner, H. R., and Arditi, M., “Noninvasive Estimate of the Mechanical-Properties of Peripheral Arteries from Ultrasonic and Photoplethysmographic Measurements,” Clin. Phys. Physiol. Meas., vol. 12, no. 1, pp. 39-54, 1991.
[25] Olufsen, M. S., “Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries,” Am. J. Physiol. Heart Circ. Physiol., vol. 276, no. 1, pp. H257-68, 1999.
[26] Shirwany, N. A., and Zou, M.-h., “Arterial Stiffness: A Brief Review,” Acta Pharmacol. Sin., vol. 31, no. 10, pp. 1267-1276, 2010.
[27] Leguy, C. A. D., Bosboom, E. M. H., Gelderblom, H., Hoeks, A. P. G., and van de Vosse, F. N. V., “Estimation of Distributed Arterial Mechanical Properties Using a Wave Propagation Model in a Reverse Way,” Med. Eng. Phys., vol. 32, no. 9, pp. 957-967, 2010.
[28] Henry, R. M. A., Kostense, P. J., Spijkerman, A. M. W., Dekker, J. M., Nijpels, G., Heine, R. J., Kamp, O., Westerhof, N., Bouter, L. M., and Stehouwer, C. D. A., “Arterial Stiffness Increases with Deteriorating Glucose Tolerance Status - the Hoorn Study,” Circulation, vol. 107, no. 16, pp. 2089-2095, 2003.
[29] Blacher, J., Guerin, A. P., Pannier, B., Marchais, S. J., and London, G. M., “Arterial Calcifications, Arterial Stiffness, and Cardiovascular Risk in End-Stage Renal Disease,” Hypertension, vol. 38, no. 4, pp. 938-942, 2001.
[30] Hoeks, A. P., Brands, P. J., Smeets, F. A., and Reneman, R. S., “Assessment of the Distensibility of Superficial Arteries,” Ultrasound Med. Biol., vol. 16, no. 2, pp. 121-8, 1990.
[31] Perloff, D., Grim, C., Flack, J., Frohlich, E. D., Hill, M., McDonald, M., and Morgenstern, B. Z., “Human Blood Pressure Determination by Sphygmomanometry,” Circulation, vol. 88, no. 5, pp. 2460-2470, 1993.
[32] Hansen, T. W., Staessen, J. A., Torp-Pedersen, C., Rasmussen, S., Thijs, L., Ibsen, H., and Jeppesen, J., “Prognostic Value of Aortic Pulse Wave Velocity as Index of Arterial Stiffness in the General Population,” Circulation, vol. 113, no. 5, pp. 664-670, 2006.
[33] Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A. M., Target, R., and Levy, B. I., “Assessment of Arterial Distensibility by Automatic Pulse Wave Velocity Measurement. Validation and Clinical Application Studies,” Hypertension, vol. 26, no. 3, pp. 485-90, 1995.
[34] Arts, T., Kruger, R. T., van Gerven, W., Lambregts, J. A., and Reneman, R. S., “Propagation Velocity and Reflection of Pressure Waves in the Canine Coronary Artery,” Am. J. Physiol. , vol. 237, no. 4, pp. H469-74, 1979.
[35] Bramwell, J. C., “The Velocity of the Pulse Wave in Man,” Proc. R. Soc. of Lond. B, vol. 93, no. 652, pp. 298-306, 1922.
[36] Moens, A. I., Die Pulskurve: Leiden: E.J. Brill, 1878.
[37] Davies, J. I., and Struthers, A. D., “Pulse Wave Analysis and Pulse Wave Velocity: A Critical Review of Their Strengths and Weaknesses,” J. Hypertens., vol. 21, no. 3, pp. 463-472, 2003.
[38] Kolyva, C., Spaan, J. A. E., Piek, J. J., and Siebes, M., “Windkesselness of Coronary Arteries Hampers Assessment of Human Coronary Wave Speed by Single-Point Technique,” Am. J. Physiol. Heart Circ. Physiol., vol. 295, no. 2, pp. H482-H490, 2008.
[39] Parker, K. H., and Jones, C. J. H., “Forward and Backward Running Waves in the Arteries: Analysis Using the Method of Characteristics,” J. Biomech. Eng., vol. 112, no. 3, pp. 322-326, 1990.
[40] Bleasdale, R. A., Parker, K. H., and Jones, C. J., “Chasing the Wave. Unfashionable but Important New Concepts in Arterial Wave Travel,” Am. J. Physiol. Heart Circ. Physiol., vol. 284, no. 6, pp. H1879-85, 2003.
[41] Parker, K. H., “An Introduction to Wave Intensity Analysis,” Med. Biol. Eng. Comput., vol. 47, no. 2, pp. 175-88, 2009.
[42] Sun, Y. H., Anderson, T. J., Parker, K. H., and Tyberg, J. V., “Wave-Intensity Analysis: A New Approach to Coronary Hemodynamics,” J. Appl. Physiol., vol. 89, no. 4, pp. 1636-1644, 2000.
[43] Alastruey, J., “Numerical Assessment of Time-Domain Methods for the Estimation of Local Arterial Pulse Wave Speed,” J. Biomech., vol. 44, no. 5, pp. 885-91, 2011.
[44] Feng, J., and Khir, A. W., “Determination of Wave Speed and Wave Separation in the Arteries Using Diameter and Velocity,” J. Biomech., vol. 43, no. 3, pp. 455-462, 2010.
[45] Rabben, S. I., Stergiopulos, N., Hellevik, L. R., Smiseth, O. A., Slordahl, S., Urheim, S., and Angelsen, B., “An Ultrasound-Based Method for Determining Pulse Wave Velocity in Superficial Arteries,” J. Biomech., vol. 37, no. 10, pp. 1615-1622, 2004.
[46] Khir, A. W., O'Brien, A., Gibbs, J. S. R., and Parker, K. H., “Determination of Wave Speed and Wave Separation in the Arteries,” J. Biomech., vol. 34, no. 9, pp. 1145-1155, 2001.
[47] Davies, J. E., Whinnett, Z. I., Francis, D. P., Willson, K., Foale, R. A., Malik, I. S., Hughes, A. D., Parker, K. H., and Mayet, J., “Use of Simultaneous Pressure and Velocity Measurements to Estimate Arterial Wave Speed at a Single Site in Humans,” Am. J. Physiol. Heart Circ. Physiol., vol. 290, no. 2, pp. H878-H885, 2006.
[48] Borlotti, A., Li, Y., Parker, K. H., and Khir, A. W., “Experimental Evaluation of Local Wave Speed in the Presence of Reflected Waves,” J. Biomech., vol. 47, no. 1, pp. 87-95, 2014.
[49] Alastruey, J., Khir, A. W., Matthys, K. S., Segers, P., Sherwin, S. J., Verdonck, P. R., Parker, K. H., and Peiro, J., “Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1-D Visco-Elastic Simulations against in Vitro Measurements,” J. Biomech., vol. 44, no. 12, pp. 2250-2258, 2011.
[50] Bessems, D., Giannopapa, C. G., Rutten, M. C. M., and van de Vosse, F. N., “Experimental Validation of a Time-Domain-Based Wave Propagation Model of Blood Flow in Viscoelastic Vessels,” J. Biomech., vol. 41, no. 2, pp. 284-291, 2008.
[51] Reymond, P., Merenda, F., Perren, F., Ruefenacht, D., and Stergiopulos, N., “Validation of a One-Dimensional Model of the Systemic Arterial Tree,” Am. J. Physiol. Heart Circ. Physiol., vol. 297, no. 1, pp. H208-H222, 2009.
[52] Reymond, P., Westerhof, N., and Stergiopulos, N., “Systolic Hypertension Mechanisms: Effect of Global and Local Proximal Aorta Stiffening on Pulse Pressure,” Ann. Biomed. Eng., vol. 40, no. 3, pp. 742-9, 2012.
[53] Huberts, W., Van Canneyt, K., Segers, P., Eloot, S., Tordoir, J. H. M., Verdonck, P., van de Vosse, F. N., and Bosboom, E. M. H., “Experimental Validation of a Pulse Wave Propagation Model for Predicting Hemodynamics after Vascular Access Surgery,” J. Biomech., vol. 45, no. 9, pp. 1684-1691, 2012.
[54] Alastruey, J., Parker, K. H., Peiro, J., and Sherwin, S. J., “Can the Modified Allen's Test Always Detect Sufficient Collateral Flow in the Hand? A Computational Study,” Comput. Methods Biomech. Biomed. Eng., vol. 9, no. 6, pp. 353-61, 2006.
[55] Devault, K., Gremaud, P. A., Novak, V., Olufsen, M. S., Vernieres, G., and Zhao, P., “Blood Flow in the Circle of Willis: Modeling and Calibration,” Multiscale Model. Simul., vol. 7, no. 2, pp. 888-909, 2008.
[56] Alastruey, J., Parker, K. H., Peiro, J., Byrd, S. M., and Sherwin, S. J., “Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows,” J. Biomech., vol. 40, no. 8, pp. 1794-1805, 2007.
[57] Lee, J., and Smith, N. P., “The Multi-Scale Modelling of Coronary Blood Flow,” Ann. Biomed. Eng., vol. 40, no. 11, pp. 2399-2413, 2012.
[58] Formaggia, L., Lamponi, D., Tuveri, M., and Veneziani, A., “Numerical Modeling of 1d Arterial Networks Coupled with a Lumped Parameters Description of the Heart,” Comput. Methods Biomech. Biomed. Eng., vol. 9, no. 5, pp. 273-88, 2006.
[59] Cassot, F., Zagzoule, M., and Marc-Vergnes, J. P., “Hemodynamic Role of the Circle of Willis in Stenoses of Internal Carotid Arteries. An Analytical Solution of a Linear Model,” J. Biomech., vol. 33, no. 4, pp. 395-405, 2000.
[60] Marchandise, E., Willemet, M., and Lacroix, V., “A Numerical Hemodynamic Tool for Predictive Vascular Surgery,” Med. Eng. Phys., vol. 31, no. 1, pp. 131-144, 2009.
[61] Steele, B. N., Wan, J., Ku, J. P., Hughes, T. J. R., and Taylor, C. A., “In Vivo Validation of a One-Dimensional Finite-Element Method for Predicting Blood Flow in Cardiovascular Bypass Grafts,” IEEE Trans. Biomed. Eng. , vol. 50, no. 6, pp. 649-656, 2003.
[62] Olufsen, M. S., Peskin, C. S., Kim, W. Y., Pedersen, E. M., Nadim, A., and Larsen, J., “Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions,” Ann. Biomed. Eng., vol. 28, no. 11, pp. 1281-1299, 2000.
[63] Sherwin, S. J., Formaggia, L., Peiro, J., and Franke, V., “Computational Modelling of 1d Blood Flow with Variable Mechanical Properties and Its Application to the Simulation of Wave Propagation in the Human Arterial System,” Int. J. Numer. Methods Fluids, vol. 43, no. 6-7, pp. 673-700, 2003.
[64] Berland, J., Bogey, C., Marsden, O., and Bailly, C., “High-Order, Low Dispersive and Low Dissipative Explicit Schemes for Multiple-Scale and Boundary Problems,” J. Comput. Phys., vol. 224, no. 2, pp. 637-662, 2007.
[65] Hirsh, C., Numerical Computation of Internal and External Flow, Vol. 1, pp. 301-318, New York: Wiley, 1990.
[66] Colonius, T., “Modeling Artificial Boundary Conditions for Compressible Flow,” Annu. Rev. Fluid Mech., vol. 36, pp. 315-345, 2004.
[67] Hirsh, C., Numerical Computation of Internal and External Flow, Vol. 2, pp. 344-401, New York: Wiley, 1990.
[68] Roe, P. L., “Characteristic-Based Schemes for the Euler Equations,” Annu. Rev. Fluid Mech., vol. 18, pp. 337-365, 1986.
[69] Poinsot, T. J., and Lele, S. K., “Boundary-Conditions for Direct Simulations of Compressible Viscous Flows,” J. Comput. Phys., vol. 101, no. 1, pp. 104-129, 1992.
[70] Thompson, K. W., “Time-Dependent Boundary-Conditions for Hyperbolic Systems, 2,” J. Comput. Phys., vol. 89, no. 2, pp. 439-461, 1990.
[71] Quick, C. M., Berger, D. S., Hettrick, D. A., and Noordergraaf, A., “True Arterial System Compliance Estimated from Apparent Arterial Compliance,” Ann. Biomed. Eng., vol. 28, no. 3, pp. 291-301, 2000.
[72] Quick, C. M., Berger, D. S., Stewart, R. H., Laine, G. A., Hartley, C. J., and Noordergraaf, A., “Resolving the Hemodynamic Inverse Problem,” IEEE Trans. Biomed. Eng. , vol. 53, no. 3, pp. 361-368, 2006.
[73] Leguy, C. A. D., Bosboom, E. M. H., Belloum, A. S. Z., Hoeks, A. P. G., and van de Vosse, F. N., “Global Sensitivity Analysis of a Wave Propagation Model for Arm Arteries,” Med. Eng. Phys., vol. 33, no. 8, pp. 1008-1016, 2011.
[74] Esmaily Moghadam, M., Vignon-Clementel, I. E., Figliola, R., and Marsden, A. L., “A Modular Numerical Method for Implicit 0d/3d Coupling in Cardiovascular Finite Element Simulations,” J. Comput. Phys., vol. 244, pp. 63-79, 2013.
[75] Sherwin, S. J., Franke, V., Peiro, J., and Parker, K., “One-Dimensional Modelling of a Vascular Network in Space-Time Variables,” J. Eng. Math., vol. 47, no. 3-4, pp. 217-250, 2003.
[76] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys., vol. 43, no. 2, pp. 357-372, 1981.
[77] Einfeldt, B., “On Godunov-Type Methods for Gas-Dynamics,” SIAM J. Numer. Anal., vol. 25, no. 2, pp. 294-318, 1988.
[78] Osher, S., and Solomon, F., “Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws,” Math. Comput., vol. 38, no. 158, pp. 339, 1982.
[79] Olufsen, M. S., “Modeling the Arterial System with Reference to an Anesthesia Simulator,” Ph.D. dissertation, Roskilde University, 1998.
[80] Brook, B. S., Falle, S. A. E. G., and Pedley, T. J., “Numerical Solutions for Unsteady Gravity-Driven Flows in Collapsible Tubes: Evolution and Roll-Wave Instability of a Steady State,” J. Fluid Mech., vol. 396, pp. 223-256, 1999.
[81] van Leer, B., “Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method,” J. Comput. Phys., vol. 32, no. 1, pp. 101-136, 1979.
[82] Grotberg, J. B., and Jensen, O. E., “Biofluid Mechanics in Flexible Tubes,” Annu. Rev. Fluid Mech., vol. 36, pp. 121-147, 2004.
[83] Pedley, T. J., Brook, B. S., and Seymour, R. S., “Blood Pressure and Flow Rate in the Giraffe Jugular Vein,” Phil. Trans. R. Soc. Lond. B, vol. 351, no. 1342, pp. 855-66, 1996.
[84] Harten, A., “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys., vol. 49, no. 3, pp. 357-393, 1983.
[85] Sweby, P. K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM J. Numer. Anal., vol. 21, no. 5, pp. 995-1011, 1984.
[86] Shu, C. W., and Osher, S., “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes,” J. Comput. Phys., vol. 77, no. 2, pp. 439-471, 1988.
[87] Xiao, N., Humphrey, J. D., and Figueroa, C. A., “Multi-Scale Computational Model of Three-Dimensional Hemodynamics within a Deformable Full-Body Arterial Network,” J. Comput. Phys., vol. 244, pp. 22-40, 2013.
[88] Kroon, W., Huberts, W., Bosboom, M., and van de Vosse, F., “A Numerical Method of Reduced Complexity for Simulating Vascular Hemodynamics Using Coupled 0d Lumped and 1d Wave Propagation Models,” Comput. Math. Method Med., doi: 10.1155/2012/156094, 2012.
[89] Cousins, W., and Gremaud, P. A., “Boundary Conditions for Hemodynamics: The Structured Tree Revisited,” J. Comput. Phys., vol. 231, no. 18, pp. 6086-6096, 2012.
[90] Barry, A., Bielak, J., and Maccamy, R. C., “On Absorbing Boundary-Conditions for Wave-Propagation,” J. Comput. Phys., vol. 79, no. 2, pp. 449-468, 1988.
[91] Giles, M. B., “Nonreflecting Boundary-Conditions for Euler Equation Calculations,” AIAA J., vol. 28, no. 12, pp. 2050-2058, 1990.
[92] Hedstrom, G. W., “Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems,” J. Comput. Phys., vol. 30, no. 2, pp. 222-237, 1979.
[93] Alastruey, J., Parker, K. H., Peiro, J., and Sherwin, S. J., “Lumped Parameter Outflow Models for 1-D Blood Flow Simulations: Effect on Pulse Waves and Parameter Estimation,” Commun. Comput. Phys., vol. 4, no. 2, pp. 317-336, 2008.
[94] Greenwald, S. E., Carter, A. C., and Berry, C. L., “Effect of Age on the in Vitro Reflection Coefficient of the Aortoiliac Bifurcation in Humans,” Circulation, vol. 82, no. 1, pp. 114-123, 1990.
[95] Latham, R. D., Westerhof, N., Sipkema, P., Rubal, B. J., Reuderink, P., and Murgo, J. P., “Regional Wave Travel and Reflections Along the Human Aorta: A Study with Six Simultaneous Micromanometric Pressures,” Circulation, vol. 72, no. 6, pp. 1257-69, 1985.
[96] Stergiopulos, N., Westerhof, B. E., and Westerhof, N., “Total Arterial Inertance as the Fourth Element of the Windkessel Model,” Am. J. Physiol. Heart Circ. Physiol., vol. 276, no. 1, pp. H81-H88, 1999.
[97] Westerhof, N., Lankhaar, J.-W., and Westerhof, B. E., “The Arterial Windkessel,” Med. Biol. Eng. Comput., vol. 47, no. 2, pp. 131-141, 2009.
[98] van de Vosse, F. N., and Stergiopulos, N., “Pulse Wave Propagation in the Arterial Tree,” Annu. Rev. Fluid Mech., vol. 43, pp. 467-499, 2011.
[99] Shi, Y., Lawford, P., and Hose, R., “Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System,” Biomed. Eng. Online, vol. 10, 2011.
[100] Sagawa, K., “Translation of Otto Frank's Paper “Die Grundform Des Arteriellen Pulses” Zeitschrift Für Biologie 37: 483–526 (1899),” J. Mol. Cell. Cardiol., vol. 22, no. 3, pp. 253-254, 1990.
[101] Wang, J. J., O'Brien, A. B., Shrive, N. G., Parker, K. H., and Tyberg, J. V., “Time-Domain Representation of Ventricular-Arterial Coupling as a Windkessel and Wave System,” Am. J. Physiol. Heart Circ. Physiol., vol. 284, no. 4, pp. H1358-H1368, 2003.
[102] Reneman, R. S., Meinders, J. M., and Hoeks, A. P. G., “Non-Invasive Ultrasound in Arterial Wall Dynamics in Humans: What Have We Learned and What Remains to Be Solved,” Eur. Heart J., vol. 26, no. 10, pp. 960-966, 2005.
[103] Siebes, M., Verhoeff, B. J., Meuwissen, M., de Winter, R. J., Spaan, J. A. E., and Piek, J. J., “Single-Wire Pressure and Flow Velocity Measurement to Quantify Coronary Stenosis Hemodynamics and Effects of Percutaneous Interventions,” Circulation, vol. 109, no. 6, pp. 756-762, 2004.
[104] Niki, K., Sugawara, M., Chang, D., Harada, A., Okada, T., Sakai, R., Uchida, K., Tanaka, R., and Murnford, C. E., “A New Noninvasive Measurement System for Wave Intensity: Evaluation of Carotid Arterial Wave Intensity and Reproducibility,” Heart Vessels, vol. 17, no. 1, pp. 12-21, 2002.
[105] Tanaka, M., Sugawara, M., Niki, K., Izumi, T., Tarui, I., Kodera, H., Okada, T., and Harada, A., “Comparison of Two Ultrasonic Methods of One-Point Measurement of Pulse Wave Velocity-Where to Set the Echo-Tracking Positions, in the Adventitia or Intima?,” IFMBE Proceedings, vol. 25, no. 4, pp. 518-520, 2010.
[106] Pellett, A. A., and Kerut, E. K., “The Doppler Equation,” Echocardiography-J. Cardiovasc. Ultrasound Allied Tech., vol. 21, no. 2, pp. 197-198, 2004.
[107] Lu, P.-J., Hung, C.-H., Shen, T.-T., and Lin, B.-W., “Validation of Kalman Filter-Based Identification Methods for Point-Wise Determination of Vascular Hemodynamic and Structural Properties,” Am. J. Physiol. Heart Circ. Physiol. , 2013 (Submitted).
[108] Lu, P.-J., Huang, C.-H., Shen, T.-T., and Lin, B.-W., “Theory and Kalman Filter Identification of Arterial Stiffness, Stress-Free Lumen Diameter and Pulse Wave Velocity Using Single-Point Measurements,” Am. J. Physiol. Heart Circ. Physiol., 2013 (Submitted).
[109] Grinberg, L., Anor, T., Madsen, J. R., Yakhot, A., and Karniadakis, G. E., “Large-Scale Simulation of the Human Arterial Tree,” Clin. Exp. Pharmacol. Physiol., vol. 36, no. 2, pp. 194-205, 2009.
[110] Blanco, P. J., Watanabe, S. M., and Feijoo, R. A., “Identification of Vascular Territory Resistances in One-Dimensional Hemodynamics Simulations,” J. Biomech., vol. 45, no. 12, pp. 2066-2073, 2012.
[111] Xiao, X. S., Ozawa, E. T., Huang, Y. Q., and Kamm, R. D., “Model-Based Assessment of Cardiovascular Health from Noninvasive Measurements,” Ann. Biomed. Eng., vol. 30, no. 5, pp. 612-623, 2002.
[112] Sorenson, H. W., “Least-Squares Estimation - from Gauss to Kalman,” IEEE Spectr., vol. 7, no. 7, pp. 63-68, 1970.
[113] Storn, R., and Price, K., “Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341-359, 1997.
[114] Rosenbrock, H. H., “An Automatic Method for Finding the Greatest or Least Value of a Function,” Comput. J., vol. 3, no. 3, pp. 175-184, 1960.
[115] Argonne National Laboratory; http://www.mpich.org.
[116] Papageorgiou, G. L., Jones, B. N., Redding, V. J., and Hudson, N., “The Area Ratio of Normal Arterial Junctions and Its Implications in Pulse-Wave Reflections,” Cardiovascular Research, vol. 24, no. 6, pp. 478-484, 1990.
[117] McDonald, D. A., Blood Flow in Arteries, 2nd ed., London: Edward Arnold, 1974.
[118] Newman, D. L., Greenwald, S. E., and Moodie, T. B., “Reflection from Elastic Discontinuities,” Med. Biol. Eng. Comput., vol. 21, no. 6, pp. 697-701, 1983.
[119] Alastruey, J., Parker, K. H., Peiro, J., and Sherwin, S. J., “Analysing the Pattern of Pulse Waves in Arterial Networks: A Time-Domain Study,” J. Eng. Math., vol. 64, no. 4, pp. 331-351, 2009.
[120] Alastruey, J., “On the Mechanics Underlying the Reservoir-Excess Separation in Systemic Arteries and Their Implications for Pulse Wave Analysis,” Cardiovasc. Eng., vol. 10, no. 4, pp. 176-89, 2010.
[121] Lin, B.-W., and Lu, P.-J., “High-Resolution Roeʼs Scheme and Characteristic Boundary Conditions for Solving Complex Wave Reflection Phenomena in a Tree-Like Arterial Structure,” J. Comput. Phys., vol. 260, pp. 143-162, 2014.
[122] Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jr., Jones, D. W., Materson, B. J., Oparil, S., Wright, J. T., Jr., and Roccella, E. J., “Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure,” Hypertension, vol. 42, no. 6, pp. 1206-52, 2003.
[123] Davies, J. E., Alastruey, J., Francis, D. P., Hadjiloizou, N., Whinnett, Z. I., Manisty, C. H., Aguado-Sierra, J., Willson, K., Foale, R. A., Malik, I. S., Hughes, A. D., Parker, K. H., and Mayet, J., “Attenuation of Wave Reflection by Wave Entrapment Creates a "Horizon Effect" in the Human Aorta,” Hypertension, vol. 60, no. 3, pp. 778-85, 2012.
[124] Cupples, W. A., and Braam, B., “Assessment of Renal Autoregulation,” Am. J. Physiol. Renal Physiol., vol. 292, no. 4, pp. F1105-F1123, 2007.
[125] Thurau, K., “Renal Hemodynamics,” Am. J. Med., vol. 36, no. 5, pp. 698-719, 1964.
[126] Gregg, D., Dynamics of Blood and Lymph Flow, 8th ed., New York, USA: Williams and Wilkins, 1996.
[127] Alastruey, J., “Numerical Modelling of Pulse Wave Propagation in the Cardiovascular System: Development, Validation and Clinical Applications,” Ph.D. dissertation, Imperial College London, 2006.
[128] Seeley, R. R., Stephens, T. D., and Tate, P., Anatomy and Physiology, 8th ed., New York, USA: McGraw-Hill, 2007.
[129] Safar, M. E., “Arterial Aging-Hemodynamic Changes and Therapeutic Options,” Nat. Rev. Cardiol., vol. 7, no. 8, pp. 442-449, 2010.
[130] McEniery, C. M., Wilkinson, I. B., and Avolio, A. P., “Age, Hypertension and Arterial Function,” Clin. Exp. Pharmacol. Physiol., vol. 34, no. 7, pp. 665-671, 2007.
[131] Leguy, C. A. D., “On the Clinical Estimation of the Hemodynamical and Mechanical Properties of the Arterial Tree,” Ph.D. dissertation, Eindhoven University of Technology, 2010.