簡易檢索 / 詳目顯示

研究生: 蔡沛禹
Tsai, Pei-Yu
論文名稱: 捷運系統颱洪災害脆弱度之研究–以高雄捷運為例
Research on the Vulnerability of Metro Systems Induced by Typhoon and Flood Disaster: A Case Study of Kaohsiung Metro
指導教授: 魏健宏
Wei, Chien-Hung
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 170
中文關鍵詞: 颱洪災害捷運系統脆弱度貝氏網路
外文關鍵詞: Typhoon and Flood Disaster, Metro System, Vulnerability, Bayesian Network
相關次數: 點閱:73下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在氣候變遷的影響下,極端氣候與天然災害對社會經濟與自然環境之衝擊逐漸提升,且此趨勢遠非減少溫室氣體排放所能避免。因此,能夠精確辨識氣候風險並調整未來發展模式,增強系統韌性以抵抗極端氣候影響之「調適」策略,近年來逐漸受到各界重視,而地方機構自行制定因地制宜之調適計畫是未來國際趨勢。在調適策略的制定框架中,脆弱度評估係重要步驟,然而我國過去之天災脆弱度研究多針對都會區、環境保護區,且交通領域中亦鮮少針軌道系統脆弱度進行探討。
    在全球、亞洲與我國的範疇下,颱風挾帶的強降雨、洪水、強風等災害(颱洪災害)皆是造成災害程度與損傷最大的災害類別,而本研究在比較未來災害情境變化後發現,高雄市將面臨更嚴重之災害,且為符合地方自訂調適之趨勢,故挑選高雄捷運系統作為颱洪災害脆弱度評估之研究對象。研究方法方面,鑒於我國調適相關資料較缺乏,故本研究使用修正式德爾菲法與貝氏網路作為主要研究方法,藉專家意見研擬脆弱度指標並建構模型,最終進行高雄捷運脆弱度分析,以及構面影響分析、情境分析之討論。
    初始模型之分析結果顯示,強風顯著影響高架與平面段系統,洪水則顯著影響地下與平面段系統,表示本研究模型結果與數據符合捷運系統於實務中面臨之災害現況;在高捷系統颱洪災害脆弱度基礎模型中,高雄捷運系統呈現高脆弱度的機率為 69 %,表示當系統未來遭颱洪災害衝擊時,有較高機率會發生影響與損害事件,導致系統受損並僅能維持部分功能,甚至暫時中斷營運。
    構面分析結果顯示,「承受與抵禦力」為對脆弱度影響最大之構面,其次為「敏感度」以及「調適與轉型力」構面,建議針對上述構面與指標優先改善或策略擬定。根據情境分析結果,若系統本身的硬體狀態較差時,則需要以較佳的人員能力來彌補缺失,否則高脆弱度機率值將顯著升高;換言之,若系統本身的承受與抵禦力充足,再擁有良好人員素質、完善規章、充分且及時之備援設備,則可將捷運系統脆弱度維持於較低的狀態。最後,本研究證實修正式德爾菲法與貝式網路能於軌道系統天災脆弱度領域使用,此二方法分別對於指標選取與定義、評估結果呈現,以及因果關係解釋,都有良好效果。但本研究發現其仍具部分限制與缺點,並提出建議供未來研究參考。

    Under climate change, extreme weather events and disasters are increasingly impacting both society and the environment. Since reducing greenhouse gas emissions alone cannot prevent such risks, more attention is being given to adaptation strategies to enhance system resilience. Locally tailored plans led by municipal governments have become a global trend. A key step in these strategies is vulnerability assessment; however, in Taiwan, studies have primarily focused on cities, with limited emphasis on the transportation sector, particularly rail systems. Given that typhoons, which cause heavy rainfall, flooding, and strong winds, are among the most damaging disasters in Asia and Taiwan, this study assesses the Kaohsiung Metro's vulnerability to such hazards. Using the Modified Delphi Method and Bayesian Network modeling to address Taiwan's limited adaptation data, expert input was utilized to identify indicators and construct the model, which was applied in a case study of the Kaohsiung Metro.
    Initial model results indicate that strong winds have a significant impact on elevated and at-grade sections, while flooding notably affects underground and at-grade sections, demonstrating that the model and data accurately reflect the actual disaster risks faced by metro systems. In the baseline vulnerability model for typhoon and flood disasters, the Kaohsiung Metro shows a 69% probability of high vulnerability, implying a high likelihood of experiencing impact and damage when exposed to such hazards in the future. These events could impair the system, resulting in reduced operational functionality or temporary service suspension.
    The dimension analysis results indicate that Robustness and Resistance has the most significant impact on vulnerability, followed by Sensitivity, Adaptation, and Transformability. It is recommended to prioritize improvements and strategic planning focused on these dimensions and their associated indicators. According to scenario analysis, if the system's physical infrastructure is in poor condition, enhanced personnel capabilities are required to compensate for deficiencies. Otherwise, the probability of high vulnerability will increase significantly. In contrast, if the Kaohsiung Metro possesses adequate robustness and resistance, along with well-trained personnel, perfect regulations, and sufficient backup facilities, its vulnerability level can be maintained at a relatively low state.
    Ultimately, this study confirms that the Modified Delphi Method and Bayesian Network are effective and practical tools for assessing vulnerability to natural disasters in rail transit systems. These two methods demonstrate strong capabilities in indicator selection and definition, result interpretation, and causal reasoning. Nevertheless, certain limitations and shortcomings remain, and the study proposes suggestions to guide future research.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 7 1.3 研究流程 8 1.4 研究對象 10 第二章 文獻回顧 11 2.1 氣候變遷與調適策略 11 2.1.1 氣候變遷與調適策略發展概述 11 2.1.2 韌性概念與理論發展 13 2.2 脆弱度定義與理論發展 16 2.2.1 脆弱度定義 16 2.2.2 脆弱度評估法與指標相關研究 21 2.2.3 災害風險定義 28 2.2.4 災害風險相關研究 28 2.3 颱洪災害 32 2.3.1 天然災害 32 2.3.2 颱洪災害 33 2.3.3 颱洪災害對軌道系統之衝擊 37 2.4 初步擬定之捷運系統脆弱度指標 40 2.5 小結 45 第三章 研究方法 46 3.1 研究架構 46 3.2 研究方法 47 3.2.1 修正式德爾菲法 47 3.2.2 貝氏網路 49 3.3 專家訪談與問卷設計 53 3.3.1 專家訪談綱要 53 3.3.2 條件機率問卷 53 3.3.3 專家選擇 54 第四章 構面與指標評析結果 55 4.1 構面與指標定義修訂結果 55 4.2 指標狀態說明與模型架構 59 第五章 研究結果與分析 63 5.1 條件機率問卷填答專家基本資料 63 5.2 問卷資料轉換 64 5.3 初始脆弱度模型 68 5.4 模型驗證 73 5.4.1 公理一 73 5.4.2 公理二 75 5.4.1 公理三 77 5.5 脆弱度分析 79 5.5.1 高捷系統颱洪災害脆弱度基礎模型 79 5.5.2 構面影響分析 84 5.5.3 情境分析 88 第六章 結論與建議 95 6.1 結論 95 6.2 建議 99 6.3 研究限制與未來研究建議 101 參考文獻 103 中文文獻 103 英文文獻 106 日文文獻 112 附件一 訪談綱要 I 附件二 修正式德爾菲法構面與指標評析結果 I 附件三 貝氏網路機率問卷 I

    內政部消防署(2023)。臺灣地區天然災害損失統計表(47年至111年)。
    王威智(2011)。都市地區災害脆弱度評估之研究—以台北市為例。碩士論文,中國文化大學建築及都市計畫研究所。
    白仁德(2008)。各層級國土空間規劃與管理之脆弱度與回復力之評估研究-以縣市空間為對象。國科會專題研究計畫成果報告。
    交通部中央氣象局(2020)。天然災害災防問答集。
    吳振瑋(2011)。洪水災害對流域地區脆弱度影響之研究-以高屏溪流域為個案地區。碩士論文,國立臺北大學都市計劃研究所。
    周仲島、陳永明、林李耀(2007)。防災國家型科技計畫(NAPHM)回顧與展望臺灣地區重大天然災害-氣象篇。國研科技,(13),頁8-11。
    林子恆(2017)。應用貝氏網路探討高雄港颱風災害脆弱度分析。碩士論文,國立高雄海洋科技大學航運管理研究所。
    林冠慧、張長義(2015)。脆弱性研究的演變與當前發展。地理學報,(77),頁49-82。
    邱淑宜(2010),台灣海岸脆弱度指標建立與應用之研究。碩士論文,國立臺灣海洋大學河海工程學系。
    洪政耀(2013)。區域災害系統評估不同空間尺度之災害風險研究 - 以臺灣臺東縣坡地環境為例。博士論文,國立臺灣師範大學地理學系。
    洪雅雯(2005)。建立都市災害脆弱度指標之研究。碩士論文,逢甲大學土地管理所。
    洪鴻智、陳令韡(2012)。洪水災害之整合性脆弱度評估-大甲溪流域之應用。地理學報,(65),頁 79-96。
    科技部(2022)。IPCC氣候變遷第六次評估報告「衝擊、調適與脆弱度」之科學重點摘錄與臺灣氣候變遷衝擊評析更新報告。
    科技部、中央研究院環境變遷研究中心、交通部中央氣象局、 臺灣師範大學地球科學系、國家災害防救科技中心(2021)。IPCC氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告。
    徐浩然(2021)。氣候變遷下之海岸地區複合型災害風險評估與調適策略研究。碩士論文,國立臺灣海洋大學河海工程學系。
    國家災害防救科技中心(2016)。臺灣氣候變遷災害衝擊風險評估報告。
    莊博允(2020)。海岸地區多重災害風險評估模式與韌性管理之研究。碩士論文,國立臺灣海洋大學河海工程學系。
    許晃雄、王嘉琪、陳正達、李明旭、詹士樑 (2024)。國家氣候變遷科學報告2024:現象、衝擊與調適 [許晃雄、李明旭 主編]。國家科學及技術委員會與環境部聯合出版。
    許尊惠(2017)。利用貝氏網路評估海洋保護區的脆弱度-以後壁湖海洋資源保護示範區為例。碩士論文,國立高雄海洋科技大學海洋事務與產業管理研究所。
    陳永明、王俊寓、李亭萱、李彥緯、林士堯、周至中、陳昭安、童裕翔、趙品諭、鄭兆尊、劉曉薇、羅資婷(2024)。縣市氣候變遷概述2024基礎版[陳永明 主編]。國家災害防救科技中心與交通部中央氣象署聯合出版。
    陳亮全(2011)。洪水災害之災前整備及應變重點。城市發展,(11),頁8-38。
    陳禹銘、蘇昭郎、樊國恕(2009)。災害風險評估研究之探討。危機管理學刊,6(1),41-50。
    游保杉(2018)。韌性水城市評估與調適研究。經濟部水利署。
    湯孔玲(2012)。因應台灣氣候變遷都市建築洪水災害脆弱度之研究。碩士論文,國立聯合大學建築學系碩士班。
    黃昱翔(2009)。洪水災害脆弱度評估指標之建立:以南投縣水里鄉為例。碩士論文,銘傳大學建築與都市防災研究所。
    楊惟婷(2016)。洪水災害影響下臺北市居民調適行為之研究-以臺北市文山區為例。碩士論文,國立台北科技大學建築系建築與都市設計碩士班。
    葉政忠(2012)。評估氣候變遷下島嶼城市之脆弱度-以澎湖馬公市為例。碩士論文,國立中山大學海洋環境及工程學系研究所。
    葉純甄(2018)。台灣海岸侵蝕風險評估-以雲林、台東海岸為例。碩士論文,國立臺灣海洋大學河海工程學系。
    雷人傑(2012),氣候變遷下本土化海岸地區脆弱度評估與調適策略之研究。碩士論文,國立台灣海洋大學河海工程學系。
    廖嘉雄(2000)。「以貝氏網路為基礎的知識處理機制之研究」。碩士論文,東海大學工業工程學系。
    劉禹其(2011)。氣候變遷脆弱度指標於都市空間規劃應用之研究。碩士論文,國立臺北大學都市計劃研究所。
    劉紹安(2018)。雲林縣濱海陸地區地層下陷之風險評估。碩士論文,國立臺灣海洋大學河海工程學系。
    蔡曜羽(2023)。以回復力觀點探討臺鐵系統營運脆弱度。碩士論文,國立成功大學交通管理科學系。
    蕭代基、洪鴻智、楊智凱、黃德秀、王定心(2018)。國家氣候變遷與災害脆弱度評估:資本分析法之應用。地理學報,(89),頁61-84。
    蕭煥章(2008)。水災脆弱性評估模式之建立—以汐止市為例。博士論文,中國文化大學地學研究所。
    賴政佑(2017)。洪水災害脆弱度與調適能力之研究-以台中市為例。碩士論文,逢甲大學都市計畫與空間資訊學系。
    賴炳樹(2012)。因應氣候變遷之洪災脆弱度評估與調適策略規劃。博士論文,國立政治大學地政研究所。
    環境部(2023)。國家氣候變遷調適行動計畫(112-115年)。
    魏健宏、陳宥諭(2018)。創新運輸科技對社會衝擊之研究─以自動駕駛車輛為例,中華民國運輸學會第32屆學術論文研討會,逢甲大學,台中市。
    Abdrabo, K. I., Kantoush, S. A., Esmaiel, A., Saber, M., Sumi, T., Almamari, M., ... & Ghoniem, S. (2023). An integrated indicator-based approach for constructing an urban flood vulnerability index as an urban decision-making tool using the PCA and AHP techniques: A case study of Alexandria, Egypt. Urban Climate, 48, 101426.
    Adger, W. N. (2000). Social and ecological resilience: are they related? Progress in human geography, 24(3), 347-364.
    Adger, W. N. (2006). Vulnerability. Global environmental change, 16(3), 269-281.
    Ali A. & Clara A. A. (2024). Introduction to Natural Disasters. In Gregory C. (Ed.), Ciottone's Disaster Medicine. 94, 594-597.
    AON plc. (2024). Climate and Catastrophe Insight.
    Blaikie, P., & Brookfield, H. (2015). Land degradation and society. Routledge.
    Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (1994). At risk: natural hazards, people's vulnerability and disasters. Routledge.
    Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (2014). At risk: natural hazards, people's vulnerability and disasters. Routledge
    Braga, J. A., & Andrade, A. R. (2021). Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component. Reliability Engineering & System Safety, 216, 107932.
    Buckle, P., Marsh, G., & Smale, S. (2001). Assessment of personal and community resilience and vulnerability. Report: EMA Project, 15, 2000.
    Cannon, T., Twigg, J., & Rowell, J. (2003). Social vulnerability, sustainable livelihoods and disasters. Report to DFID conflict and humanitarian assistance department (CHAD) and sustainable livelihoods support office, 93, 1-63.
    Chambers, R. (1989). Editorial introduction: vulnerability, coping and policy. IDS bulletin, 20(2), 1-7.
    Chambers, R. (Ed.). (1989). Vulnerability: how the poor cope.
    Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., ... & Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405(6783), 234-242.
    Cutter, S. L. (1996). Vulnerability to environmental hazards. Progress in human geography, 20(4), 529-539.
    Dindar, S., Kaewunruen, S., & An, M. (2022). A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components. Reliability Engineering & System Safety, 218, 108130.
    Dulawan, J. M. T., Imamura, Y., Konishi, T., Amaguchi, H., & Ohara, M. (2024). A systematic framework for assessing social vulnerability to flood for integrated flood risk management: A case study in Metro Manila, Philippines. International Journal of Disaster Risk Reduction, 112, 104778.
    Engle, N. L., Johns, O. R., Lemos, M. C., & Nelson, D. R. (2011). Integrated and adaptive management of water resources: tensions, legacies, and the next best thing. Ecology and society, 16(1).
    Espada, R., Apan, A., & McDougall, K. (2017). Vulnerability assessment of urban community and critical infrastructures for integrated flood risk management and climate adaptation strategies. International Journal of Disaster Resilience in the Built Environment, 8(4), 375-411.
    Faherty, V. (1979). Continuing social work education: Results of a Delphi survey. Journal of Education for Social Work,15(1), 12-19.
    Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global environmental change, 16(3), 253-267.
    Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, B. (2002). Resilience and sustainable development: building adaptive capacity in a world of transformations. AMBIO: A journal of the human environment, 31(5), 437-440.
    Frigerio, I., & De Amicis, M. (2016). Mapping social vulnerability to natural hazards in Italy: A suitable tool for risk mitigation strategies. Environmental Science & Policy, 63, 187-196.
    Fritzsche K, Schneiderbauer S, Bubeck P, Kienberger S, Buth M, Zebisch M, Kahlenborn W. (2015). The vulnerability sourcebook. Edited by GIZ - Gesellschaft für internationale Zusammenarbeit.
    Gallopín, G. C. (2006). Linkages between vulnerability, resilience, and adaptive capacity. Global environmental change, 16(3), 293-303.
    Gregory R. C. & Mark E. G. (2024). Hurricanes, Cyclones, and Typhoons. In Gregory C. (Ed.), Ciottone's Disaster Medicine. 95, 598-600.
    Hammer, W. (1972). Handbook of System and Product Safety. Prentice-Hall. ISBN:0133822265, 9780133822267.
    Holling, C.S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4, 1–23.
    Holton, G. A. (2004). Defining risk. Financial analysts journal, 60(6), 19-25.
    Hong, W. T., Clifton, G., & Nelson, J. D. (2022). Rail transport system vulnerability analysis and policy implementation: Past progress and future directions. Transport Policy, 128, 299-308.
    Hosseini, S., & Barker, K. (2016). Modeling infrastructure resilience using Bayesian networks: A case study of inland waterway ports. Computers & Industrial Engineering, 93, 252-266.
    Hosseini, S., & Barker, K. (2016). Modeling infrastructure resilience using Bayesian networks: A case study of inland waterway ports. Computers & Industrial Engineering, 93, 252-266.
    Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: Impacts, Adaptation, and Vulnerability.
    Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability.
    Intergovernmental Panel on Climate Change. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability.
    International Union of Railways (2017), RAIL ADAPT - Adapting the railway for the future.
    Joshi, D., Takeuchi, W., Kumar, N., & Avtar, R. (2024). Multi-hazard risk assessment of rail infrastructure in India under local vulnerabilities towards adaptive pathways for disaster resilient infrastructure planning. Progress in Disaster Science, 21, 100308.
    Klein, R. J., Nicholls, R. J., & Thomalla, F. (2003). Resilience to natural hazards: How useful is this concept? Global environmental change part B: environmental hazards, 5(1), 35-45.
    Klockner, K., & Toft, Y. (2018). Railway accidents and incidents: Complex socio-technical system accident modelling comes of age. Safety science, 110, 59-66.
    Lagap, U., & Ghaffarian, S. (2024). Digital post-disaster risk management twinning: A review and improved conceptual framework. International Journal of Disaster Risk Reduction, 104629.
    Liverman, D. M. (1986). The vulnerability of urban areas to technological risks: An overview of US and European experience. Cities, 3(2), 142-147.
    Liverman, D.M. (1990). Vulnerability to Global environmental change. In understanding Global Environmental Change, edited by R.E.Kasperson et al., 27-44.
    Lu, Y., Zhai, G., & Zhou, S. (2024). An integrated Bayesian networks and Geographic information system (BNs-GIS) approach for flood disaster risk assessment: A case study of Yinchuan, China. Ecological Indicators, 166, 112322.
    Lummen, N. S., & Yamada, F. (2014). Implementation of an integrated vulnerability and risk assessment model. Natural hazards, 73, 1085-1117.
    Lyu, H. M., Yin, Z. Y., Zhou, A., & Shen, S. L. (2024). Sensitivity analysis of typhoon-induced floods in coastal cities using improved ANP-GIS. International Journal of Disaster Risk Reduction, 104344.
    Marchand, M. (2009). Modelling coastal vulnerability: design and evaluation of a vulnerability model for tropical storms and floods (Vol. 5). Ios Press.
    McEntire, D. A. (2021). Disaster response and recovery: strategies and tactics for resilience. John Wiley & Sons.
    Mukherjee, A., Rakshit, S., Nag, A., Ray, M., Kharbikar, H. L., Shubha, K., ... & Burman, R. R. (2016). Climate change risk perception, adaptation and mitigation strategy: An extension outlook in mountain Himalaya. Conservation agriculture: an approach to combat climate change in Indian Himalaya, 257-292.
    Munasinghe, M., & Swart, R. (2005). Primer on climate change and sustainable development: facts, policy analysis, and applications (Vol. 3). Cambridge University Press.
    Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The review of higher education, 18(4), 423-436.
    Network Rail. (2021). Network Rail Asset Management: Weather Resilience and Climate Change Adaptation Plan (WRCCA).
    Network Rail. (2021). Network Rail Third Adaptation Report.
    Newell, B., Crumley, C., Hassan, N., Lambin, E., Pahl-Wostl, C., Underdal, A., & Wasson, R. (2005). A conceptual template for integrative human-environment research. Global Environmental Change, 15(4), 299-307.
    Nguyen, K. A., Liou, Y. A., & Terry, J. P. (2019). Vulnerability of Vietnam to typhoons: A spatial assessment based on hazards, exposure and adaptive capacity. Science of the Total Environment, 692, 31-46.
    Nirupama, N. (2012). Risk and vulnerability assessment: a comprehensive approach. International Journal of Disaster Resilience in the Built Environment, 3(2), 103-114.
    Olson, R. S., Emel Ganapati, N., Gawronski, V. T., Olson, R. A., Salna, E., & Pablo Sarmiento, J. (2020). From disaster risk reduction to policy studies: Bridging research communities. Natural hazards review, 21(2), 04020014.
    Parsons, M., Glavac, S., Hastings, P., Marshall, G., McGregor, J., McNeill, J., ... & Stayner, R. (2016). Top-down assessment of disaster resilience: A conceptual framework using coping and adaptive capacities. International Journal of Disaster Risk Reduction, 19, 1-11.
    Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems, 1, 6-18.
    Raemaekers, S., & Sowman, M. (2015). Community-level socio-ecological vulnerability assessments in the Benguela current large marine ecosystem.
    Railway Safety and Standards Board (RSSB). Retrieved from: https://www.rssb.co.uk/
    Railway Safety and Standards Board. (2023), Common Hazards for the Management of Industry Safety.
    Ranke, U. (2016). Natural disaster risk management. Geoscience and Social Responsibility.-S, 514.
    Ritu R. S. (2024). Floods. In Gregory C. (Ed.), Ciottone's Disaster Medicine. 98, 612-614.
    Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: issues and analysis. International journal of forecasting, 15(4), 353-375.
    Schneiderbauer S, Zebisch M, Kass S, Pedoth L. (2013). Assessment of vulnerability to natural hazards and climate change in mountain environments – examples from the Alps. Measuring vulnerability.
    Schneiderbauer, S., & Ehrlich, D. (2004). Risk, hazard and people’s vulnerability to natural hazards. A review of definitions, concepts and data. European Commission Joint Research Centre. EUR, 21410, 40.
    Schneiderbauer, S., Pedoth, L., Zhang, D., & Zebisch, M. (2013). Assessing adaptive capacity within regional climate change vulnerability studies – an Alpine example. Natural hazards, 67, 1059-1073.
    Schulze, E. D., & Mooney, H. A. (Eds.). (2012). Biodiversity and ecosystem function. Springer Science & Business Media.
    Shitangsu P. (2013). Vulnerability Concepts and its Application in Various Fields: A Review on Geographical Perspective. Journal of Life and Earth Science. 8, 63-81.
    Smith, K. (1996). Environmental Hazards: Assessing Risk and Reducing Disaster, (Second ed.) Routledge, London. Soc. Prot. Discuss. Pap. Ser.115, Soc. Prot. Unit, World Bank, Washington, DC. pp. 42.
    Susman, P., O’Keefe, P. and Wisner, B. (1984). Global disasters: A radical interpretation’, in K Hewitt (ed) Interpretations of Calamity from the Viewpoint of Human Ecology, Allen and Unwin, Boston, 264-283.
    Tai, C. V., Chung, E. S., & Kim, D. (2024). A socio-economic vulnerability assessment framework against natural disasters: A case study in Seoul, South Korea. Urban Climate, 58, 102139.
    Tehler, H., Cedergren, A., de Herve, M. D. G., Gustavsson, J., Hassel, H., Lindbom, H., ... & Wester, M. (2024). Evidence-based disaster risk management: A scoping review focusing on risk, resilience and vulnerability assessment. Progress in Disaster Science, 100335.
    The European Climate Adaptation Platform. (2010). Tomorrow’s Railway and Climate Change Adaptation (TRACCA).
    Thywissen, K. (2006). Components of risk: a comparative glossary. UNU-EHS.
    Timmerman, P. (1981). Vulnerability, resilience, and the collapse of society: A review of models and possible climatic applications, Institute of Environmental Studies. Toronto: University of Toronto.
    Timmermann, P. (1981). Vulnerability, resilience and the collapse of society. Environmental Monograph, 1, 1-42.
    U.S. Department of Transportation. (2021). DOT Climate Action Plan: Revitalizing Efforts to Bolster Adaptation & Increase Resilience.
    U.S. Federal Transit Administration. (2024). Climate and Sustainability:Rail Resiliency- Resiliency Planning.
    U.S. Federal Transit Administration. (2024). Transit Resilience Guidebook.
    U.S. Geological Survey. (2023). Coastal Vulnerability Index. Retrieved from https://www.usgs.gov/media/images/coastal-vulnerability-index
    United Nations Office for Disaster Risk Reduction. (2009). 2009 UNISDR terminology on disaster risk reduction.
    United Nations Office for Disaster Risk Reduction. (2015). Making Development Sustainable: The Future of Disaster Risk Management. Global Assessment Report on Disaster Risk Reduction. Geneva, Switzerland: United Nations Office for Disaster Risk Reduction.
    United Nations Office for Disaster Risk Reduction. (2016). Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction.
    United Nations Office for Disaster Risk Reduction. (2019). Global Assessment Report on Disaster Risk Reduction, Geneva, Switzerland, United Nations Office for Disaster Risk Reduction.
    Wang, T., Qu, Z., Yang, Z., Nichol, T., Dimitriu, D., Clarke, G., ... & Lee, P. T. (2020). Impact analysis of climate change on rail systems for adaptation planning: A UK case. Transportation Research Part D: Transport and Environment, 83, 102324.
    Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., ... & Winsemius, H. C. (2020). Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences, 20(4), 1069-1096.
    Watts, M. J., & Bohle, H. G. (1993). The space of vulnerability: the causal structure of hunger and famine. Progress in human geography, 17(1), 43-67.
    White, G. F. (1942). Human adjustment to floods: a geographical approach to the flood problem in the United States. (Doctoral dissertation, The University of Chicago).
    Wisner, B. (2012). Framing disaster: theories, models and stories seeking to understand hazards, vulnerability and risk. En Wisner B., Gaillard JC., Kelman I.(eds.) Handbook of hazards and disaster risk reduction.
    Wu, M., Chen, M., Chen, G., Zheng, D., Zhao, Y., Wei, X., & Xin, Y. (2024). Research on methodology for assessing social vulnerability to urban flooding: A case study in China. Journal of Hydrology, 132177.
    Yazdi, M., Khan, F., Abbassi, R., & Rusli, R. (2020). Improved DEMATEL methodology for effective safety management decision-making. Safety science, 127, 104705.
    Yin, J., Khan, R. U., Wang, X., & Asad, M. (2024). A data-centered multi-factor seaport disruption risk assessment using Bayesian networks. Ocean Engineering, 308, 118338.
    Yoon, D. K. (2012). Assessment of social vulnerability to natural disasters: a comparative study. Natural hazards, 63, 823-843.
    Youn, B. D., Hu, C., & Wang, P. (2011). Resilience-driven system design of complex engineered systems.
    Zebisch M, Schneiderbauer S, Renner K, Below T, Brossmann M, Ederer W, Schwan S. (2017). Risk Supplement to the Vulnerability Sourcebook. Guidance on how to apply the Vulnerability Sourcebook’s approach with the new IPCC AR5 concept of climate risk. Edited by GIZ - Gesellschaft für internationale Zusammenarbeit.
    Zebisch, M., Schneiderbauer, S., & Pedoth, L. (2014). Regional vulnerability assessment in the Alps. Climate change adaptation manual. Lessons learned from European and other industrialized countries. Tayler & Francis/Routledge.
    Zebisch, M., Schneiderbauer, S., Fritzsche, K., Bubeck, P., Kienberger, S., Kahlenborn, W., ... & Below, T. (2021). The vulnerability sourcebook and climate impact chains–a standardized framework for a climate vulnerability and risk assessment. International Journal of Climate Change Strategies and Management, 13(1), 35-59.
    Zebisch, M., Terzi, S., Pittore, M., Renner, K., Schneiderbauer, S. (2022). Climate Impact Chains—A Conceptual Modelling Approach for Climate Risk Assessment in the Context of Adaptation Planning. In: Kondrup, C., et al. Climate Adaptation Modelling. Springer Climate. Springer International Publishing.
    JR 東日本(2020)。鉄道施設等の浸水対策について。
    JR 東日本(2021)。異常気象に備えた新幹線に対する降雨防災の取り組みについて。
    日本環境省(2023)。地域気候変動適応計画策定マニュアル-手順編-。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE