| 研究生: |
林俊穎 Lin, Jun-Ying |
|---|---|
| 論文名稱: |
鎂基儲氫合金添加鈀 / 氫化鈦對其吸放氫動力與熱力學影響之研究 Effects of Palladium / Titanium hydride on Hydrogen Kinetic and Thermodynamic Abs/Des-orption Performance of Magnesium-based Hydrogen Storage Alloy |
| 指導教授: |
陳朝光
Chen, Chao-Guang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 儲氫材料 、氫化鎂 、第一原理 、密度泛函理論 |
| 外文關鍵詞: | Hydrogen storage materials, Magnesium hydride, The First Principle, Density Function Theory |
| 相關次數: | 點閱:109 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今認為儲氫合金具有高度發展之潛力,其原理是將氫氣以物理或化學吸附的方式儲存於合金當中,氫化鎂的理論儲氫值高(7.6wt.%)且價格低廉,但放氫溫度高且吸放氫動力學性差,研究發現添加過渡元素能改善性質。本實驗添加氫化鈦與鈀,探討其對氫化鎂儲氫性質的影響。
本文研究方法包含實驗與量子力學模擬兩大部分,實驗部分使用氫化鎂作為主材料,分別添加 與 球磨形成下列材料: 、 、 ,以TGA/DSC與PCT量測其吸放氫量、吸放氫時間和吸放氫溫度,並以SEM跟XRD做材料結構與化合物成份分析。模擬的部分,由量子力學角度出發,借密度泛函理論與第一原理,計算材料表面在摻雜催化劑元素後,其態密度與穩定性的改變。
由實驗結果可以歸類出下列結論:(1)由於 本身具有對氫的高親和力,又從XRD中可發現 的存在,此說明 亦有幫助 脫氫的作用,因此 具有三者間最高的儲氫量(5.5wt.%)。(2)對 做XRD分析後可發現,並沒有新的 相關化合物產生,故認為 僅為催化劑,由 與 的吸放氫循環圖可以知道其能幫助 在低溫情況下吸氫。(3) 與 具有偕同作用,由XRD可以發現兩者生成 和 等化合物,比較三樣材料之吸放氫循環圖後,可以發現 具有最低的放氫溫度,因此認為 - 的偕同作用能有效降低放氫溫度。(4)由於溫度越高,分子的動能則越高,故吸氫時間大致會隨著溫度升高而縮短,但又吸氫反應本身為放熱反應,過高的溫度反而不利於反應進行。(5)活化亦為儲氫中重要一環,由SEM中可以發現,經活化的材料其尺寸會縮小而表面破碎且面積增加,使得吸放氫過程加快。(6) 和 雖使放氫溫度下降,但也需更大環境壓力方能吸氫,故其平台壓略大於其他材料。(7)量測不同溫度下 之PCT曲線,可繪製出Van’t Hoff關係圖,並得到其解離熵與解離焓分別為83 KJ‧mol-1與135.8 J‧mol-1。
此外,模擬的部分,可得以下幾點結論:(1)添加Pd/Ti會使Mg-H鍵長分別增加1.3%與18%。(2)由 之總/分波態密度圖可發現,價帶區域與導帶區域中存在一寬能隙,寬度約4.0eV。(3)由 - 之總/分波態密度圖顯示,摻雜的 原子在+0.2eV處與Mg、H發生雜化,使導帶底部由費米能級EF右方移至左方。(4)由 - 之總/分波態密度圖中,發現其PDOS峰值往左偏移,但峰型沒有改變,表示 並未對 的電子組態造成太多影響或形成新鍵。(5) -d軌域所提供的電子使能隙消失,價電子移動至導帶所需要之能量下降,其放氫溫度隨之下降。(6)模擬顯示摻雜催化原子的晶體解離能下降,同時放氫溫度下降。
Nowadays, the great majority believe that there is great potentiality in hydrogen storage alloy storing hydrogen by physical and chemical absorption. MgH2 has high capacity and unexpansive. However, its operation temperature is high and owns poor kinetics. Currently, scientists find that adding transition elements can improve the properties of hydrogen storage alloy. In this research, outstanding improvements of kinetic and thermal properties are given by addition of Palladium and Titanium hydride to Magnesium-based alloy.
The research involves experiment and quantum-mechanical calculation. In experiment, magnesium-based alloy is used as main material, into which TiH2/Pd are added separately. TGA/DSC and PCT measure the capacity, spending time and temperature of abs/des-orption, additionally, SEM and XRD analyze the structures and components of material. The quantum mechanical calculation is based on Density Function Theory and the First Principle. The changes of DOS and stability are observed after doping.
The results of the real experiment clearly demonstrate following points. (1) Because Pd owns highly affinity to hydrogen and Mg6Pd was found from the XRD, it is clearly shown that Pd is beneficial of dehydrogenation. 2MgH2-0.1Pd has the highest capacity of all the alloys listed, approximately 5.5 wt.%. (2) From XRD analysis, it could not find any new Ti-related compound. Thus, TiH2, considered as the catalyst, leads to the condition of 2MgH2-TiH2 and 2MgH2-TiH2-0.1Pd efficiently absorbing hydrogen in low temperature. (3) Due to the synergistic effects between Pd and TiH2 (PdTi2 and Pd2Ti are produced by mechanical alloying), 2MgH2-TiH2-0.1Pd owns the lowest dehydrogenation temperature. (4) The higher temperature is; the stronger kinetic energy molecule has. Generally, the time spending on absorption would decrease as the temperature raise. However, too high temperature is unbeneficial to reaction since the absorption reaction is exothermic. (5) Activation plays an important role in the abs/des-orption. It shortens the abs/des-orption time because of the surface area increasing. From SEM, it is clear that the size and surface become smaller and rougher. (6) Even though PdTi2 and Pd3Ti decrease the limited dehydrogenation temperature, they need more pressure to react. Therefore, the plateau of 2MgH2-TiH2-0.1Pd is slightly higher than others. (7) According to the PCT curves of 2MgH2-TiH2-0.1Pd at the different temperature, Van’t Hoff related plot can be described. 2MgH2-TiH2-0.1Pd’s enthalpy (83 KJ‧mol-1) and entropy (135.8 J‧mol-1 ) are given by Van’t Hoff related plot.
Furthermore, in simulation part, there are also some points: (1) adding Pd/Ti would increase distance of Mg-H. (2) From MgH2’s T/PDOSs, there is an gap between the valence band and conduction band, roughly 4.0eV. (3) From MgH2-Pd’s T/PDOSs, there is a spd hybridization between Pd, Mg and H atom at +0.2eV. It moved the bottom of the conduction band below Fermi energy. (4) Because the peak of MgH2-Ti’s PDOSs’ do not alter much but slightly move, Ti is believed as the catalyst. (5) Energy Gap is vanished by the electrons provided by Ti-d. It means the temperature and energy of dehydrogenation decreasing. (6) The dehydrogenation energy decreases while doping catalytic elements and temperature falls simultaneously.
[1] U.S. Department of Energy. and Office of Basic Energy Sciences, “Basic research needs for the hydrogen economy,” 2003. http://energy.gov/eere/office-energy-efficiency-renewable-energy.
[2] T. J. Carter and L. A. Cornish, “Hydrogen in metals,” Eng. Fail. Anal., vol. 8, no. 2, pp. 113–121, 2001.
[3] K. Durai-Swamy, D. G. Loffler, D. Mason, K. Taylor, and D. Edlund, “Issues in hydrocarbon fuel processing,” ACS Div. Fuel Chem. Prepr., vol. 47, no. 2, pp. 540–541, 2002.
[4] 王俊揚, 鎂基儲氫材料吸放氫行為之研究與性能改善, 成功大學, 碩士論文, 2015.
[5] 蘇順發, “儲氫材料,” 科學發展, vol. 483, p. 17, 2013.
[6] G. G.G. Libowitz, H.F. Hayes , T.R.P., “The System Zirconium-Nickel and Hydrogen,” J. Phys. Chem., no. 62, pp. 76–79, 1958.
[7] J. J. Reilly and R. H. Wiswall, “Formation and properties of iron titanium hydride,” Inorg. Chem., vol. 13, no. 1, pp. 218–222, 1974.
[8] A. Zaluska, L. Zaluski, and J. O. Str??m-Olsen, “Nanocrystalline magnesium for hydrogen storage,” J. Alloys Compd., vol. 288, no. 1–2, pp. 217–225, 1999.
[9] J. F. Stampfer, C. E. Holley, and J. F. Suttle, “The Magnesium-Hydrogen System 1-3,” J. Am. Chem. Soc., vol. 82, no. 14, pp. 3504–3508, 1960.
[10] A. Reiser, B. Bogdanovi, and K. Schlichte, “Application of Mg-based metal-hydrides as heat energy storage systems,” Int. J. Hydrogen Energy, vol. 25, no. 5, pp. 425–430, 2000.
[11] X. Yao, C. Wu, A. Du, J. Zou, Z. Zhu, P. Wang, H. Cheng, S. Smith, and G. Lu, “Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium,” J. Am. Chem. Soc., vol. 129, no. 50, pp. 15650–15654, 2007.
[12] E. A. Lass, “Hydrogen storage in rapidly solidified and crystallized Mg-Ni-(Y,La)-Pd alloys,” Int. J. Hydrogen Energy, vol. 37, no. 12, pp. 9716–9721, 2012.
[13] B. H. Chen, C. H. Kuo, J. R. Ku, P. S. Yan, C. J. Huang, M. S. Jeng, and F. H. Tsau, “Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs,” J. Alloys Compd., vol. 568, pp. 78–83, 2013.
[14] T. Haraki and N. Inomata, “Hydrogen desorption kinetics of hydrides of LaNi sub 4. 5 Al sub 0. 5, LaNi sub 4. 5 Mn sub 0. 5 and LaNi sub 2. 5 Co sub 2. 5,” J. Alloy. Compd., vol. 295, pp. 407–411, 1998.
[15] T. X. D. X. Fe, “Kinetics of hydrogen-induced di usion phase transformation in binary and pseudobinary intermetallic compounds,” vol. 27, pp. 765–767, 2002.
[16] K. S. Jung, E. Y. Lee, and K. S. Lee, “Catalytic effects of metal oxide on hydrogen absorption of magnesium metal hydride,” J. Alloys Compd., vol. 421, no. 1–2, pp. 179–184, 2006.
[17] B. Chen, Y. Chuang, and C. Chen, “Improving the hydrogenation properties of MgH 2 at room temperature by doping with nano-size ZrO 2 catalyst,” J. Alloys Compd., vol. 655, pp. 21–27, 2016.
[18] 陳振華、陳鼎, “機械合金化與固液反應球磨,” 2006.
[19] Y. Ogino, T. Yamasaki, S. Murayama, and R. Sakai, “Non-equilibrium phases formed by mechanical alloying of CrCu alloys,” J. Non. Cryst. Solids, vol. 117–118, no. PART 2, pp. 737–740, 1990.
[20] A. C. Dillon, P. A. Parilla, T. Gennett, J. L. Alleman, K. M. Jones, and M. J. Heben, “Hydrogen Storage in Single-wall Carbon Nanotubes,” vol. 3393.
[21] J. Ren, S. Liao, and J. Liu, “Hydrogen storage of multiwalled carbon nanotubes coated with Pd-Ni nanoparticles under moderate conditions,” Chinese Sci. Bull., vol. 51, no. 24, pp. 2959–2963, 2006.
[22] L. Gao, E. Yoo, J. Nakamura, W. Zhang, and H. T. Chua, “Hydrogen storage in Pd-Ni doped defective carbon nanotubes through the formation of CHx (x = 1, 2),” Carbon N. Y., vol. 48, no. 11, pp. 3250–3255, 2010.
[23] R. Campesi, F. Cuevas, E. Leroy, M. Hirscher, R. Gadiou, C. Vix-Guterl, and M. Latroche, “In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template,” Microporous Mesoporous Mater., vol. 117, no. 1–2, pp. 511–514, 2009.
[24] “能源與材料 – 地球未來最有潛力的新能源:氫能源 (1),” no. 1.
[25] 大角泰章, 水素吸藏合金. 1993.
[26] 吳廣新, 鎂基儲氫合金吸放熱力學和動力學研究. 上海大學博士論文.
[27] 汪衛華, “A brief History of metallic glasses,” 物理, vol. 11, no. 40, pp. 701–709, 2011.
[28] R.A. Oriani, “THE PHYSICAL AND METALLURGICAL ASPECTS OF HYDROGEN IN METALS,” Minneapolis, 1993.
[29] L. Schlapbach, “Hydrogen in Intermetallic Compounds II,” 1992.
[30] M. Yamaguchi and E. Akiba, “Electronic and Magnetic Properties of Metals and Ceramics Part II,” VCH, vol. 3B, p. 333, 1994.
[31] G. Sandrock, “Panoramic overview of hydrogen storage alloys from a gas reaction point of view,” J. Alloys Compd., vol. 293, pp. 877–888, 1999.
[32] J. J. Reilly and R. H. J. Wiswall, “The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4,” Inorg. Chem., vol. 7, pp. 2254–2256, 1968.
[33] Q. A. Zhang, Y. Q. Lei, X. G. Yang, Y. L. Du, and Q. D. Wang, “Effects of annealing treatment on phase structures, hydrogen absorption–desorption characteristics and electrochemical properties of a V3TiNi0.56 Hf0.24 Mn0.15 Cr0.1 alloy,” vol. 305, pp. 125–129, 2000.
[34] M. Martin, C. Gommel, C. Borkhart, and E. Fromm, “Absorption and desorption kinetics of hydrogen storage alloys,” J. Alloys Compd., vol. 238, no. 1–2, pp. 193–201, 1996.
[35] T. Kabutomori, K. Ohnishi, H. Site, and B. Sketches, “Metal Hydrides,” Energy Carries Convers. Syst., vol. II.
[36] J. Graetz, “New approaches to hydrogen storage,” Chem. Soc. Rev., vol. 38, no. 1, pp. 73–82, 2009.
[37] 陶占良 陈军 李兰兰 程方益, “储氢材料第一性原理计算的研究进展.”
[38] 國家理論科學研究中心, “第一性原理材料計算初階課程,” 2014. http://www.ncts.ncku.edu.tw/phys/cmr/140426/.
[39] A. Postnikov, “Thomas-Fermi method,” 1991.
[40] 江進福, “波函數與密度泛函,” 物理雙月刊, vol. 23, no. 5, pp. 549–553, 2001.
[41] Robert G. Parr and Weitao Yang, Density-Functional Theory of Atoms and Molecules. Oxford University Press, 1989.
[42] 李明憲, “Hohenberg-Kohn Theorem 的證明,” 2014.
[43] 柯宗良, 以第一原理研究 Fen/(BaTiO3)m的磁電耦合效應. 國立中正大學物理所, 2014.
[44] 李明憲, “密度泛函理論的方法與應用- CASTEP 計算,” 2012.
[45] W. Kohn, “Electronic structure of matter - wave functions and density functionals - Nobel Lecture,” vol. 71, no. 5, pp. 213–237, 1999.
[46] J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B, vol. 23, no. 10, pp. 5048–5079, 1981.
[47] K. Burke, J. P. Perdew, and M. Ernzerhof, “Why the Generalized Gradient Approximation Works and How to Go Beyond It,” Int. J. Quantum Chem., vol. 61, pp. 287–293, 1997.
[48] M. Orio, D. a Pantazis, and F. Neese, “Density functional theory.,” vol. 102, pp. 443–453, 2009.
[49] J. H. Dai, Y. Song, and R. Yang, “Intrinsic mechanisms on enhancement of hydrogen desorption from MgH 2 by (001) surface doping,” Int. J. Hydrogen Energy, vol. 36, no. 20, pp. 12939–12949, 2011.