| 研究生: |
王暐鈞 Wang, Wei-Chun |
|---|---|
| 論文名稱: |
利用銅鎳鍍膜製備免轉置石墨烯薄膜 Transfer-Free Synthesis of Patterned Graphene on Insulating Substrates with Deposited Cu-Ni Film |
| 指導教授: |
陳巧貞
Chen, Chiao-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 免轉置 、石墨烯 、化學氣相沉積法 、銅鎳合金 |
| 外文關鍵詞: | transfer-free, graphene, chemical vapor deposition, Cu-Ni alloy |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了改善傳統轉置方法對於石墨烯品質的影響,本研究於二氧化矽基板上濺鍍銅、鎳薄膜作為化學氣相沉積製程中的催化金屬,進行免轉置石墨烯的成長。在高溫下,銅鎳鍍膜會形成銅鎳合金,其中銅用來控制石墨烯的析出沉積,鎳則是用來控制石墨烯的厚度,透過最佳化銅鎳鍍膜的厚度與組成、碳源濃度、腔體壓力以及成長溫度等合成參數,成長出高品質的免轉置石墨烯。
在1000 ℃與腔體壓力為90 torr的環境下,以組成比例為95% Cu/5% Ni,厚度700 nm的銅鎳鍍膜作為催化基材,成功的不需透過轉置步驟直接成長高品質的雙層石墨烯於矽基板上。
In our study, we propose to deposit patterned Cu and Ni thin films on the silica substrate to enable transfer-free growth of patterned graphene via CVD method. At elevated temperature, deposited Cu and Ni thin films formed Cu-Ni alloy to serve as the metal catalyst for graphene growth. In this case, Cu layer was employed as a segregation controller and Ni layer worked as the thickness controller of the synthesized graphene film. The effects of following parameters, including the total thickness and composition of deposited metal films, the concentration of carbon source, chamber pressure and the growth temperature, were systematically investigated to optimize the synthesis process. In conclusion, we successfully synthesized the transfer-free graphene at 1000 ℃ under a chamber pressure of 90 torr with the 95% Cu/5% Ni metal film of 700 nm in the total thickness. According to the statistical analysis of Raman measurements recorded from the synthesized graphene films, we demonstrated that with the optimal synthesis parameters, the produced transfer-free graphene composed of ~2 layered graphene films with low defect intensity.
1. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109-162.
2. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C., Graphene Photonics and Optoelectronics. Nat Photon 2010, 4, 611-622.
3. Chen, J.; Wen, Y.; Guo, Y.; Wu, B.; Huang, L.; Xue, Y.; Geng, D.; Wang, D.; Yu, G.; Liu, Y., Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates. J. Am. Chem. Soc. 2011, 133, 17548-17551.
4. Sun, J.; Gao, T.; Song, X.; Zhao, Y.; Lin, Y.; Wang, H.; Ma, D.; Chen, Y.; Xiang, W.; Wang, J.; Zhang, Y.; Liu, Z., Direct Growth of High-Quality Graphene on High-κ Dielectric SrTiO3 Substrates. J. Am. Chem. Soc. 2014, 136, 6574-6577.
5. Yan, Z.; Peng, Z.; Sun, Z.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M.; Tour, J. M., Growth of Bilayer Graphene on Insulating Substrates. ACS Nano 2011, 5, 8187-8192.
6. Levendorf, M. P.; Ruiz-Vargas, C. S.; Garg, S.; Park, J., Transfer-Free Batch Fabrication of Single Layer Graphene Transistors. Nano Letters 2009, 9, 4479-4483.
7. Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y., Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters 2010, 10, 1542-1548.
8. Liu, X.; Fu, L.; Liu, N.; Gao, T.; Zhang, Y.; Liao, L.; Liu, Z., Segregation Growth of Graphene on Cu–Ni Alloy for Precise Layer Control. J. Phys. Chem. C 2011, 115, 11976-11982.
9. Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z., Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Lett. 2011, 11, 297-303.
10. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666.
11. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312.
12. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35.
13. Lu, C.-C.; Jin, C.; Lin, Y.-C.; Huang, C.-R.; Suenaga, K.; Chiu, P.-W., Characterization of Graphene Grown on Bulk and Thin Film Nickel. Langmuir 2011, 27, 13748-13753.
14. López, G. A.; Mittemeijer, E. J., The Solubility of C in Solid Cu. Scr. Mater. 2004, 51, 1-5.
15. Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett. 2009, 9, 4268-4272.
16. Geim, A. K.; Novoselov, K. S., The Rise of Graphene. Nat. Mater. 2007, 6, 183-191.
17. Wallace, P. R., The Band Theory of Graphite. Phys. Rev. 1947, 71, 622-634.
18. May, J. W., Platinum Surface LEED Rings. Surf. Sci. 1969, 17, 267-270.
19. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351-355.
20. Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nat. Nano. 2008, 3, 206-209.
21. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385.
22. Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T., Properties of Graphene: a theoretical perspective. Adv. Phys. 2010, 59, 261-482.
23. Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B 2004, 108, 19912-19916.
24. de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G., Epitaxial Graphene. Solid State Commun. 2007, 143, 92-100.
25. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191.
26. He, H.; Klinowski, J.; Forster, M.; Lerf, A., A New Structural Model for Graphite Oxide. Chem. Phys. Lett. 1998, 287, 53-56.
27. Reina, A.; Son, H.; Jiao, L.; Fan, B.; Dresselhaus, M. S.; Liu, Z.; Kong, J., Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. J. Phys. Chem. C 2008, 112, 17741-17744.
28. Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M., Thin-Film Particles of Graphite xide: High-Yield Synthesis and Flexibility of The Particles. Carbon 2004, 42, 2929-2937.
29. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-Throughput Solution Processing of Large-scale Graphene. Nat. Nano. 2009, 4, 25-29.
30. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H., Highly Conducting Graphene Sheets and Langmuir-Blodgett Films. Nat. Nano. 2008, 3, 538-542.
31. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nano. 2008, 3, 563-568.
32. Lee, J. H.; Shin, D. W.; Makotchenko, V. G.; Nazarov, A. S.; Fedorov, V. E.; Kim, Y. H.; Choi, J.-Y.; Kim, J. M.; Yoo, J.-B., One-Step Exfoliation Synthesis of Easily Soluble Graphite and Transparent Conducting Graphene Sheets. Adv. Mater. 2009, 21, 4383-4387.
33. Shih, C.-J.; Lin, S.; Strano, M. S.; Blankschtein, D., Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvents: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation. J. Am. Chem. Soc. 2010, 132, 14638-14648.
34. Hsu, C.-J.; Nayak, P. K.; Wang, S.-C.; Sung, J. C.; Wang, C.-L.; Wu, C.-L.; Huang, J.-L. Spinodal Decomposition of Mono- to Few-Layer Graphene on Ni Substrates at Low Temperature 2012, p. 2442-2447.
http://ir.lib.ncku.edu.tw/handle/987654321/132174 (accessed 2012-03).
35. Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A roadmap for graphene. Nature 2012, 490, 192-200.
36. Beer, A. E. K. a. M., Pyrolytic Formation of Highly Crystalline Graphite Films. J. Appl. Phys. 1966, 37, 2179-2181.
37. Gullapalli, H.; Mohana Reddy, A. L.; Kilpatrick, S.; Dubey, M.; Ajayan, P. M., Graphene Growth via Carburization of Stainless Steel and Application in Energy Storage. Small 2011, 7, 1697-1700.
38. Yamamoto, K.; Fukushima, M.; Osaka, T.; Oshima, C., Charge-transfer Mechanism for the Monolayer Graphite /Ni(111) System. Phys. Rev. B 1992, 45, 11358-11361.
39. Chen, Z.; Ren, W.; Liu, B.; Gao, L.; Pei, S.; Wu, Z.-S.; Zhao, J.; Cheng, H.-M., Bulk Growth of Mono- to Few-Layer Graphene on Nickel Particles by Chemical Vapor Deposition from Methane. Carbon 2010, 48, 3543-3550.
40. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 2010, 5, 574-578.
41. Ramón, M. E.; Gupta, A.; Corbet, C.; Ferrer, D. A.; Movva, H. C. P.; Carpenter, G.; Colombo, L.; Bourianoff, G.; Doczy, M.; Akinwande, D.; Tutuc, E.; Banerjee, S. K., CMOS-Compatible Synthesis of Large-Area, High-Mobility Graphene by Chemical Vapor Deposition of Acetylene on Cobalt Thin Films. ACS Nano 2011, 5, 7198-7204.
42. C. Vo-Van, A. K., A. Reserbat-Plantey, O. Fruchart, P. Bayle-Guillemaud, N. Bendiab, Epitaxial Graphene Prepared by Chemical Vapor Deposition on Single Crystal Thin Iridium Films on Sapphire. Appl. Phys. Lett. 2011, 98, 181903.
43. Chuhei, O.; Ayato, N., Ultra-Thin Epitaxial Films of Graphite and Hexagonal Boron Nitride on Solid Surfaces. J. Phys. Condens. Matter 1997, 9, 1.
44. Land, T. A.; Michely, T.; Behm, R. J.; Hemminger, J. C.; Comsa, G., STM Investigation of Single Layer Graphite Structures Produced on Pt(111) by Hydrocarbon Decomposition. Surf. Sci. 1992, 264, 261-270.
45. Wang, S. M.; Pei, Y. H.; Wang, X.; Wang, H.; Meng, Q. N.; Tian, H. W.; Zheng, X. L.; Zheng, W. T.; Liu, Y. C., Synthesis of Graphene on a Polycrystalline Co Film by Radio-frequency Plasma-Enhanced Chemical Vapour Deposition. J. Phys. D: Appl. Phys. 2010, 43, 455402.
46. Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A., Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness. Carbon 2007, 45, 2017-2021.
47. Q. K. Yu, J. L., S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, Graphene Segregated on Ni Surfaces and Transferred to Insulators. Appl. Phys. Lett. 2008, 93, 113103.
48. Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 2011, 21, 3324-3334.
49. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359-4363.
50. Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y., Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices. Nano Lett. 2011, 11, 767-771.
51. Pirkle, A. C., J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M., The Effect of Chemical Residues on the Physical and Electrical Properties of Chemical Vapor Deposited Graphene Transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.
52. Lin, Y.-C.; Lu, C.-C.; Yeh, C.-H.; Jin, C.; Suenaga, K.; Chiu, P.-W., Graphene Annealing: How Clean Can It Be? Nano Lett. 2012, 12, 414-419.
53. Gong, C.; Floresca, H. C.; Hinojos, D.; McDonnell, S.; Qin, X.; Hao, Y.; Jandhyala, S.; Mordi, G.; Kim, J.; Colombo, L.; Ruoff, R. S.; Kim, M. J.; Cho, K.; Wallace, R. M.; Chabal, Y. J., Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide. J. Phys. Chem. C 2013, 117, 23000-23008.
54. Regan, W. A., N.; Aleman, B.; Geng, B. S.; Girit, C.; Maserati, L.; Wang, F.; Crommie, M.; Zettl, A., A Direct Transfer of Layer-Area Graphene. Appl. Phys. Lett. 2010, 96, 113102.
55. Wang, D.-Y.; Huang, I. S.; Ho, P.-H.; Li, S.-S.; Yeh, Y.-C.; Wang, D.-W.; Chen, W.-L.; Lee, Y.-Y.; Chang, Y.-M.; Chen, C.-C.; Liang, C.-T.; Chen, C.-W., Clean-Lifting Transfer of Large-area Residual-Free Graphene Films. Adv. Mater. 2013, 25, 4521-4526.
56. Martins, L. G. P.; Song, Y.; Zeng, T.; Dresselhaus, M. S.; Kong, J.; Araujo, P. T., Direct Transfer of Graphene onto Flexible Substrates. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17762-17767.
57. Bachmatiuk, A.; Börrnert, F.; Grobosch, M.; Schäffel, F.; Wolff, U.; Scott, A.; Zaka, M.; Warner, J. H.; Klingeler, R.; Knupfer, M.; Büchner, B.; Rümmeli, M. H., Investigating the Graphitization Mechanism of SiO2 Nanoparticles in Chemical Vapor Deposition. ACS Nano 2009, 3, 4098-4104.
58. Guo Hong, Q.-H. W., Jianguo Ren, and Shuit-Tong Lee, Mechanism of non-metal catalytic growth of graphene on silicon. Applied Physics Letters 2012, 100, 231604.
59. Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C.; Stitt, J.; Snyder, D. W., Characterization of Graphene Films and Transistors Grown on Sapphire by Metal-Free Chemical Vapor Deposition. ACS Nano 2011, 5, 8062-8069.
60. Kim, K.-B.; Lee, C.-M.; Choi, J., Catalyst-Free Direct Growth of Triangular Nano-Graphene on All Substrates. J. Phys. Chem. C 2011, 115, 14488-14493.
61. Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J.-H.; Cuniberti, G.; Büchner, B., Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator. ACS Nano 2010, 4, 4206-4210.
62. Yuta, M.; Atsushi, N.; Jiro, T., Graphite Thin Films Consisting of Nanograins of Multilayer Graphene on Sapphire Substrates Directly Grown by Alcohol Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2011, 50, 04DH12.
63. Li, Z.; Wu, P.; Wang, C.; Fan, X.; Zhang, W.; Zhai, X.; Zeng, C.; Li, Z.; Yang, J.; Hou, J., Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano 2011, 5, 3385-3390.
64. Xue, Y.; Wu, B.; Jiang, L.; Guo, Y.; Huang, L.; Chen, J.; Tan, J.; Geng, D.; Luo, B.; Hu, W.; Yu, G.; Liu, Y., Low Temperature Growth of Highly Nitrogen-Doped Single Crystal Graphene Arrays by Chemical Vapor Deposition. J. Am. Chem. Soc. 2012, 134, 11060-11063.
65. Wu, T.; Ding, G.; Shen, H.; Wang, H.; Sun, L.; Jiang, D.; Xie, X.; Jiang, M., Triggering the Continuous Growth of Graphene Toward Millimeter-Sized Grains. Adv. Funct. Mater. 2013, 23, 198-203.
66. Chen, J.; Guo, Y.; Jiang, L.; Xu, Z.; Huang, L.; Xue, Y.; Geng, D.; Wu, B.; Hu, W.; Yu, G.; Liu, Y., Near-Equilibrium Chemical Vapor Deposition of High-Quality Single-Crystal Graphene Directly on Various Dielectric Substrates. Adv. Mater. 2014, 26, 1348-1353.
67. Liu, B.; Tang, D.-M.; Sun, C.; Liu, C.; Ren, W.; Li, F.; Yu, W.-J.; Yin, L.-C.; Zhang, L.; Jiang, C.; Cheng, H.-M., Importance of Oxygen in the Metal-Free Catalytic Growth of Single-Walled Carbon Nanotubes from SiOx by a Vapor−Solid−Solid Mechanism. J. Am. Chem. Soc. 2011, 133, 197-199.
68. Chen, J.; Guo, Y.; Wen, Y.; Huang, L.; Xue, Y.; Geng, D.; Wu, B.; Luo, B.; Yu, G.; Liu, Y., Two-Stage Metal-Catalyst-Free Growth of High-Quality Polycrystalline Graphene Films on Silicon Nitride Substrates. Adv. Mater. 2013, 25, 992-997.
69. Xu, S. C.; Man, B. Y.; Jiang, S. Z.; Chen, C. S.; Yang, C.; Liu, M.; Gao, X. G.; Sun, Z. C.; Zhang, C., Direct Synthesis of Graphene on SiO2 Substrates by Chemical Vapor Deposition. CrystEngComm 2013, 15, 1840-1844.
70. Xue, Y.; Wu, B.; Guo, Y.; Huang, L.; Jiang, L.; Chen, J.; Geng, D.; Liu, Y.; Hu, W.; Yu, G., Synthesis of Large-Area, Few-Layer Graphene on Iron Foil by Chemical Vapor Deposition. Nano Res. 2011, 4, 1208-1214.
71. Tuba Oznuluer, E. P., Emre O. Polat, Osman Balci, Omer Salihoglu, and Coskun Kocabas, Synthesis of Graphene on Gold. Appl. Phys. Lett. 2011, 98, 183101.
72. Geng, D.; Wu, B.; Guo, Y.; Huang, L.; Xue, Y.; Chen, J.; Yu, G.; Jiang, L.; Hu, W.; Liu, Y., Uniform Hexagonal Graphene Flakes and Films Grown on Liquid Copper Surface. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 7992-7996.
73. Peng, Z.; Yan, Z.; Sun, Z.; Tour, J. M., Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel. ACS Nano 2011, 5, 8241-8247.
74. Tan, L.; Zeng, M.; Wu, Q.; Chen, L.; Wang, J.; Zhang, T.; Eckert, J.; Rümmeli, M. H.; Fu, L., Direct Growth of Ultrafast Transparent Single-Layer Graphene Defoggers. Small 2015, 11, 1840-1846.
75. Zhang, Y.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F., Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene. Nature 2009, 459, 820-823.
76. Kaplas, T.; Sharma, D.; Svirko, Y., Few-Layer Graphene Synthesis on a Dielectric Substrate. Carbon 2012, 50, 1503-1509.
77. Su, C.-Y.; Lu, A.-Y.; Wu, C.-Y.; Li, Y.-T.; Liu, K.-K.; Zhang, W.; Lin, S.-Y.; Juang, Z.-Y.; Zhong, Y.-L.; Chen, F.-R.; Li, L.-J., Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Lett. 2011, 11, 3612-3616.
78. Masato Tamaoki, H. I., Shigeru Kishimoto, and Takashi Mizutani, Transfer-free Fabrication of Graphene Field Effect Transistor Arrays Using Solid-Phase Growth of Graphene on a SiO2/Si Substrate. Appl. Phys. Lett. 2013, 103, 183114.
79. Medina, H.; Huang, C.-C.; Lin, H.-C.; Huang, Y.-H.; Chen, Y.-Z.; Yen, W.-C.; Chueh, Y.-L., Ultrafast Graphene Growth on Insulators via Metal-Catalyzed Crystallization by a Laser Irradiation Process: From Laser Selection, Thickness Control to Direct Patterned Graphene Utilizing Controlled Layer Segregation Process. Small 2015, 11, 3017-3027.
80. Kang, D.; Kim, W.-J.; Lim, J. A.; Song, Y.-W., Direct Growth and Patterning of Multilayer Graphene onto a Targeted Substrate without an External Carbon Source. ACS Applied Materials & Interfaces 2012, 4, 3663-3666.
81. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706-710.
82. Wang, D.; Tian, H.; Yang, Y.; Xie, D.; Ren, T.-L.; Zhang, Y., Scalable and Direct Growth of Graphene Micro Ribbons on Dielectric Substrates. Scientific Reports 2013, 3, 1348.
83. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.
84. Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X., Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett. 2007, 7, 2758-2763.
85. Blake, P. H., E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making Graphene Visible. Appl. Phys. Lett. 2007, 91, 063124.
86. Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752-7777.
87. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51-87.
88. Thomsen, C.; Reich, S., Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000, 85, 5214-5217.
89. Ferrari, A. C.; Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095-14107.
90. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401.
91. Wang, Y. y.; Ni, Z. h.; Yu, T.; Shen, Z. X.; Wang, H. m.; Wu, Y. h.; Chen, W.; Shen Wee, A. T., Raman Studies of Monolayer Graphene: The Substrate Effect. J. Phys. Chem. C 2008, 112, 10637-10640.
92. Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47-57.
93. Cooper, D. R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; Yu, V., Experimental Review of Graphene. ISRN condens. matter phys. 2012, 2012, 56.
94. Chen, C.-C.; Kuo, C.-J.; Liao, C.-D.; Chang, C.-F.; Tseng, C.-A.; Liu, C.-R.; Chen, Y.-T., Growth of Large-Area Graphene Single Crystals in Confined Reaction Space with Diffusion-Driven Chemical Vapor Deposition. Chem. Mater. 2015, 27, 6249-6258.
95. Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano 2011, 5, 6069-6076.
96. Kasap, S.; Khaksaran, H.; Celik, S.; Ozkaya, H.; Yank, C.; Kaya, I. I., Controlled Growth of Large Area Multilayer Graphene on Copper by Chemical Vapour Deposition. Phys. Chem. Chem. Phys. 2015, 17, 23081-23087.
97. Song, Y.; Pan, D.; Cheng, Y.; Wang, P.; Zhao, P.; Wang, H., Growth of Large Graphene Single Crystal inside a Restricted Chamber by Chemical Vapor Deposition. Carbon 2015, 95, 1027-1032.
98. Dong Chul, K.; Dae-Young, J.; Hyun-Jong, C.; YunSung, W.; Jai Kwang, S.; Sunae, S., The Structural and Electrical Evolution of Graphene by Oxygen Plasma-Induced Disorder. Nanotechnology 2009, 20, 375703.
99. Isaac, C.; Luis, A. J.; Jifa, T.; Yong, P. C., Effect of Oxygen Plasma Etching on Graphene Studied Using Raman Spectroscopy and Electronic Transport Measurements. New J. Phys. 2011, 13, 025008.
100. Bartelt, N. C.; McCarty, K. F., Graphene Growth on Metal Surfaces. MRS Bull 2012, 37, 1158-1165.
101. Shu, N.; Wei, W.; Shirui, X.; Qingkai, Y.; Jiming, B.; Shin-shem, P.; Kevin, F. M., Growth from Below: Bilayer Graphene on Copper by Chemical Vapor Deposition. New J. Phys. 2012, 14, 093028.
102. Yoon, D.; Son, Y.-W.; Cheong, H., Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Lett. 2011, 11, 3227-3231.
103. Moore, W. J.; Lee, J. K., Kinetics of the Formation of Oxide Films on Nickel Foil. J. Chem. Soc. Faraday Trans. 1952, 48, 916-920.
104. Lambers, E. S.; Dykstal, C. N.; Seo, J. M.; Rowe, J. E.; Holloway, P. H., Room-Temperature Oxidation of Ni(110) at Low and Atmospheric Oxygen Pressures. Oxid. Met. 1996, 45, 301-321.
校內:2022-08-07公開