| 研究生: |
張家豪 Chang, Chia-Hao |
|---|---|
| 論文名稱: |
奈米粒子在氧化石墨烯上之綴飾與應用 Decoration and application of nanoparticles on graphene oxide |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 還原氧化石墨烯 、鉑奈米粒子 、金奈米粒子 、硼氫化鈉 、水解產氫 、對硝基苯酚 |
| 外文關鍵詞: | reduced graphene oxide, platinum nanoparticle, gold nanoparticle, sodium borohydride, hydrolysis, 4-nitrophenol |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係有關還原氧化石墨烯/鉑奈米粒子複合物與還原氧化石墨烯/金奈米粒子複合物之合成及其觸媒特性之研究。複合物的合成,是先利用漢默法製備出氧化石墨烯,再經由微波輔助合成法在氧化石墨烯上分別修飾鉑奈米粒子及金奈米粒子。
關於還原氧化石墨烯/鉑奈米粒子複合物用於催化硼氫化鈉水解產氫的研究,結果顯示產氫速率隨著溫度升高而增快,總產氫量也隨觸媒量增加而增加,但比活性則隨著觸媒量增加而下降。又隨著硼氫化鈉濃度的增加,產氫速率先增後減,最適濃度為1 wt%。
關於氧化石墨烯/金奈米粒子複合物催化對硝基苯酚還原之研究,結果顯示反應遵循擬一階動力學模式,且反應速率隨著溫度及硝基苯酚初濃度的增加而增加,但反應速率常數隨著硝基苯酚初濃度的增加而減小,推測係因反應為擴散控制所致。
This study concerns the synthesis and catalytic properties of graphene oxide/platinum and graphene/gold nanocomposites. For the synthesis of composites, graphene oxide was prepared by Hummer’s method at first and then platinum or gold nanoparticles were decorated onto its surface via the microwave-assisted synthesis method.
For the hydrogen generation from the hydrolysis of sodium borohydride catalyzed by graphene oxide/platinum nanocomposite, it was found that the hydrogen generation rate increased with increasing the temperature. As the catalyst amount increased, the amount of hydrogen generated increased but the specific activity decreased. In addition, with increasing the concentration of sodium borohydride, the hydrogen generation rate increased at first and then decreased. The optimal sodium borohydride concentration was 1 wt%.
For the catalytic reduction of 4-nitrophenol by graphene/gold nanocomposite, it was found that the reaction obeyed the pseudo-first-order kinetic model. The reaction rate increased with increasing the temperature and the initial concentration of 4-nitrophenol. However, with increasing the initial concentration of 4-nitrophenol, the rate constant decreased. It was suggested that the reaction was diffusion controlled.
[1] 高逢時,科學發展,,386期,67-71 (2005)
[2] 楊乾信,池易楷,楊惇智,科學發展.,392期,48-53 (2007)
[3] 馬遠榮,科學發展,382期,72-75 (2004)。
[4] http://www.ks.uiuc.edu/Research/nanotube/
[5] 李元堯,21世紀的尖端材料-奈米碳管,化工技術 3月,140 (2003)。
[6] http://www.ks.uiuc.edu/Research/nanotube/
[7] http://www.materialsnet.com.tw/DocView.aspx?id=8109
[8] 張川修 許祐川 楊家銘,化學,六十六卷,第二期 (2008)
[9] 蘇清源,石墨烯氧化物之特性與應用前景, Physics Bimonthly, 33卷2期 (2011)
[10] N. Ravishankar,Chem. Mater., 23, 2772–2780 (2011)
[11] J. Zhang, Z. Xiong and X. S. Zhao,J. Mater. Chem., 21, 3634–3640 (2011)
[12] V. Berry,J. Phys. Chem. Lett., 1(12),1853–1860 (2010)
[13] M. R. Das, R. K. Sarma, R. Saikia, V. S. Kale, M. V. Shelke,P. Sengupta,Collid. Surface. B.,83,16–22 (2011)
[14] Q. Qu , S. Yang , and X. Feng,Adv. Mater., 23, 5574–5580 (2011)
[15] A. N. Sidorov , G. W. Sławin´ ski , A.H. Jayatissa , F. P. Zamborini; G. U. Sumanasekera ,Carbon,50,699–705 (2012)
[16] W. Ren, Y. Fang, and E. Wang,ACS NANO.,5(8),6425–6433 (2011)
[17] X. Zhang , Y. Sun , X. Cui , Z. Jiang, Int. J. Hydrogen. Energ.,37,811-815 (2012)
[18] C. Liu , K. Wang , S. Luo ,Y. Tang , and L. Chen,small,7(9),1203–1206 (2011)
[19] H. Xu and K. S. Suslick,J. Am. Chem. Soc., 133, 9148–9151 (2011)
[20] Z. Xiong, L. L. Zhang, J. Ma and X. S. Zhao,Chem. Commun., 46, 6099–6101(2010)
[21] 馬振基,奈米材料科技原理與應用,全華出版社,2004
[22] 葉安義,科學發展, 418期,42-47 (2007)
[23] D. Xu,, P. Dai, Q. Guo, X. Yue, Int. J. Hydrogen. Energ.,33,7371-7377 (2008)
[24] C. Crisafulli , S. Scire` , M. Salanitri , R. Zito ,S. Calamia, Int. J. Hydrogen. Energ.,36,3817-3826 (2011)
[25] C. Wu, H. Zhang, B. Yi,Catalysis Today.,93-95, 477–483 (2004)
[26] D. Xu , H. Zhang , W. Ye,Cat. Commu.,8(11),1767–1771 (2007)
[27] J. Yang, F. Cheng, J. Liang, J. Chen, Int. J. Hydrogen. Energ.,36.1411-1417 (2011)
[28] Ö. Metin, S. Özkar, and S. Sun,Nano Res. 3(9), 676–684 (2012)
[29] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312-1314 (2009)
[30] B. H. Hong,Nature,457, 706-710 (2009)
[31] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science, 312, 1191-1196 (2006)
[32] 李季鴻,硼氫化鈉反應管式產氫裝置設計研究,國立成功大學航空太空工程研究所碩士論文。(2008)
[33] Q. Zhang, G. Smith, Y. Wu, Int. J. Hydrogen Energy., 31, 961-965. (2006)
[34] S. C. Amendola, S. L. Sharp-Goldman, S. M. Janjua, Int. J. Hydrogen Energy., 25, 969-975. (2006)
[35] Z. Zahang, C. Shao, Y. Sun, J. Mu, M. Zhang, Z. Guo, P. Liang, C. Wang, Y. Liu, J. Mater. Chem., 22, 1387-1395. (2012)
[36] W. S. Hummers; R. E. Offeman,J. Am. Chem. Soc.,80, 1339–1339 (1958)
[37] C. Li,Chem. Commun., 47, 2580–2582 (2011)
[38] E. T. Samulski,Nano Lett.,8(6), 1679–1682 (2008)
[39] Y. H. Hu,Ind. Eng. Chem. Res., 50, 6132–6137 (2011)
[40] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang,C. K. Koo, Z. Shen, and John T. L. Thong,Small, 6(2), 195–200 (2010)
[41] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi,1 M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, Phys. Rev. Lett., 97, 187401-187404 (2006)
[42] H. M. Cheng,Ind. Eng. Chem. Res., 35,3023–3028 (2010)
[43] N. Patel, B. Patton, C. Zanchetta, R. Fernandes, G. Guella, A. Kale, A. Miotello, Int. J. Hydrogen. Energ.,33(1), 287 – 292 (2008)
[44] L. Hu, R. Ceccato, R. Raj., J. Power Sources,196(1),69–75 (2011)
[45] M. Chandra, Q. Xu, J. Power Sources,168,135–142 (2007)
[46] N. Aktas,Appl. Catal. B-Environ,102(1-2),201–206, (2011)
[47] K. S. Novoselov, A. K. Geim,Science,22,666-669 (2004)
[48] W. A. de Heer, C. Berger, X. S. Wu, P. N. First, E. H. Conrad, X. B. Li, T. B. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, G. Martinez,Sol. St. Comm.,143(1–2),92–100 (2007)