簡易檢索 / 詳目顯示

研究生: 謝岳勳
Sie, Yue-Syun
論文名稱: 利用液滴系統進行秀麗隱桿線蟲之生物力學研究
Biomechanical analysis of the nematode Caenorhabditis elegans based on the worm-in-drop (WID) system
指導教授: 莊漢聲
Chuang, Han-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 40
中文關鍵詞: 秀麗隱桿線蟲生物感測器微觀粒子影像流速儀布朗運動微量樣品黏度計
外文關鍵詞: Caenorhabditis (C.) elegans, Biosensor, μPIV, Brownian motion, Micro-volume viscosity measurement technique
相關次數: 點閱:192下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 秀麗隱桿線蟲(Caenorhabditis elegans)是目前已知最小的多細胞無脊椎動物之一。自40年前由Sydney Brenner博士[1]發現後,即成為基因工程、神經科學、遺傳學與製藥領域最有效的一種動物模型。相較於其他更高等複雜的動物模型,線蟲的優勢在於體型小(~1 mm)、透明、基因完全定序、具備少量神經元(302)、生命週期短(~2.5天)且飼養繁殖容易。雖然線蟲對於外在環境的變化非常敏感,然而相關其運動力學的研究仍相當缺乏且不易達成。因此本研究藉由一套簡易的微液滴系統評估線蟲與外在環境的關係,最終希望能提供線蟲相關研究量化之生物力學數據。在本研究中為了定義線蟲游動環境的黏度,利用微觀粒子影像流速儀(μPIV)的原理配合布朗運動(Brownian motion)發展出一套微量樣品的黏度量測技術,大幅改善目前市面上傳統黏度計的缺點,例如微量化樣品(<1μL)、可拋棄式載具、大範圍黏度(1cp~1664cp)、價格便宜、非侵入式測量等。在此研究中線蟲的生物力學分析,其是將線蟲挑入矩陣狀的模穴中,利用矩陣狀的模穴得到了多隻線蟲游動影像,此法之優點為節省實驗時間、勞動人力、節省實驗花費、限制線蟲於單一模穴中避免影像重疊、可大量平行量測,定義線蟲在不同粘度下的游動參數如蟲體曲率分佈、頻率、攻角。與分析線蟲於佈滿粒子之線蟲生長基中之游動影像,建立其在此環境中的模型,利用粒子影像流速儀的原理分析造成之流場變化,可得隨著時間產生之推進力以及運動能量輸出的變化。以上這些分析可用來評估各種實驗過的線蟲體內的肌肉以及神經是否有造成改變,亦或量化比較這些參數在不同線蟲株之間的關係以做為未來在神經學、基因工程與藥物開發之參考依據。

    Caenorhabditis (C.) elegans is known as one of smallest invertebrate animals. The round worm C. elegans has been proven to be a powerful model genetic system[1] for a wide variety of neurobiological purposes. In contrast to the lab mice, C. elegans is an important animal model in genetics, neurobiology, and drug screening due to fast reproduction, handful neurons (302), short body length (~1 mm), a short life cycle (2.5 days), an explicitly-defined neural network[2], fully sequenced genome, and optical transparency. The nematode C. elegans is sensitive to environmental stimulation. However, interactions between biomechanical responses of the nematode and different environmental stimuli are difficult to reach. In this thesis, a simple micro-droplet system was employed as a research tool to study the locomotive behaviors of C. elegans in response to environmental stimuli. The system featured confined space with minimum interference, low cost, simple microfabrication, massively parallel measurement and prevent image overlapping. In this research, μPIV diffusometry was used to assist the measurements of liquid viscosity by Brownian motion. The technique was also used to correlate the viscosity change of dextran solutions and the kinematics of the micro-swimmer, C. elegans. The advantages of this technique include small volume (< 1μL), noninvasiveness, ease of use, and low cost. The good agreement between the data measured from the μPIV system and a commercial viscometer validated the practicability of the approach. A broad range of viscosity measurements( >〖10〗^3 mPa∙s) were investigated. The demonstration confirms the possible use of the technique in other biological applications that requires broad-range and small-volume measurement capabilities for viscosity. In this research, biomechanical analyses out of the worm undulatory kinematics were also achieved based on the same micro-droplet system. Spatio-temporal contour of body curvature, bending frequency, and angle of attack were measured successfully. The droplet system combined with μPIV provided a unique measure to assess the propulsive force and power of C. elegans. Biomechanical properties of the nematode C. elegans can be eventually used to quantify the phenotypes of normal nematodes and mutants carrying neural and muscular disease. The results will benefit pharmacology, neurology, and genetics and provide useful information for future applications.

    中文摘要 I Abstract III 致謝 V Contents VI Figure Contents IX Chapter 1 Introduction 1 1.1 Background and literature review 1 1.2 Motivation and objectives 1 Chapter 2 Materials and Methods 3 2.1 Worm Strains and Cultivation 3 2.2 Study of kinematics of C. elegans with the different of buffers 3 2.3 Polydimethylsiloxane(PDMS) chamber array fabrication 4 2.4 Kinematics of the C. elegans in fluids of varying viscosity 5 2.5 Kinematics of the C. elegans with the analytic of image (Image processing with Image J) 5 2.6 Kinematics of the C. elegans with the analytic of image (Image processing with Matlab) 6 2.7 Kinematics of the C. elegans with the analytic of parameters 7 2.8 Gait analysis of software-programmable in the C. elegans 8 2.9 The c. elegans kinematics: Propulsive force and propulsive power measurements 9 2.9.1 Principles 9 2.9.2 Materials and methods 11 Chapter 3 A micro-volume viscosity measurement technique[22] 14 3.1 μPIV System 14 3.2 Measurement chamber 14 3.3 Imaging processing 16 3.4 Preparation of colloidal suspensions 17 3.5 Hindered diffusion 18 3.6 Viscosity determination 19 3.7 Results and discussion (viscosity measurement) 21 3.7.1 Calibration of the system 21 3.7.2 Error removal 24 3.7.3 Study of kinematics of C. elegans with the viscosity measurements 27 Chapter 4 The C. elegans biomechanical analysis of results and discussion 29 4.1 Measure the C. elegans swimming parameters 29 4.2 Comparison of wild-type (N2) and mutant strains (kin-2) worms swimming 31 4.3 Evaluation of the C. elegans swimming caused propulsive force 33 4.4 Evaluation of the C. elegan swimming caused energy 35 Chapter 5 Conclusion 36 Chapter 6 Future Work 37 Reference 38 Appendix A: A micro-volume viscosity measurement technique based on μPIV diffusometry 40

    1. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
    2. White, J.G., et al., The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci, 1986. 314(1165): p. 1-340.
    3. Ward, A., et al., Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci, 2008. 11(8): p. 916-22.
    4. Ryu, W.S. and A.D. Samuel, Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined Thermal stimuli. J Neurosci, 2002. 22(13): p. 5727-33.
    5. Fang-Yen, C., et al., Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A, 2010. 107(47): p. 20323-8.
    6. Zhao, B.B., et al., Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment. Journal of Neuroscience, 2003. 23(12): p. 5319-5328.
    7. Chalfie, M., et al., The Neural Circuit for Touch Sensitivity in Caenorhabditis-Elegans. Journal of Neuroscience, 1985. 5(4): p. 956-964.
    8. White, J.G., et al., The Structure of the Nervous-System of the Nematode Caenorhabditis-Elegans. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1986. 314(1165): p. 1-340.
    9. Kaplan, J.M. and H.R. Horvitz, A Dual Mechanosensory and Chemosensory Neuron in Caenorhabditis-Elegans. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(6): p. 2227-2231.
    10. Wicks, S.R. and C.H. Rankin, Integration of Mechanosensory Stimuli in Caenorhabditis-Elegans. Journal of Neuroscience, 1995. 15(3): p. 2434-2444.
    11. Korta, J., et al., Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans. J Exp Biol, 2007. 210(Pt 13): p. 2383-9.
    12. Jung, S., Caenorhabditis elegans swimming in a saturated particulate system. Physics of Fluids, 2010. 22(3): p. 031903.
    13. Shen, X.N., et al., Undulatory locomotion of Caenorhabditis elegans on wet surfaces. Biophys J, 2012. 102(12): p. 2772-81.
    14. Johari, S., et al., On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. Lab Chip, 2013. 13(9): p. 1699-707.
    15. Park, S., et al., Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS One, 2008. 3(6): p. e2550.
    16. Lebois, F., et al., Locomotion control of Caenorhabditis elegans through confinement. Biophys J, 2012. 102(12): p. 2791-8.
    17. Backholm, M., W.S. Ryu, and K. Dalnoki-Veress, Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm. Proc Natl Acad Sci U S A, 2013. 110(12): p. 4528-33.
    18. Sznitman, J., et al., Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number. Physics of Fluids, 2010. 22(12): p. 121901.
    19. Pierce-Shimomura, J.T., et al., Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc Natl Acad Sci U S A, 2008. 105(52): p. 20982-7.
    20. Petzold, B.C., et al., Caenorhabditis elegans body mechanics are regulated by body wall muscle tone. Biophys J, 2011. 100(8): p. 1977-85.
    21. Lu, X.Y., et al., Cloning, structure, and expression of the gene for a novel regulatory subunit of cAMP-dependent protein kinase in Caenorhabditis elegans. J Biol Chem, 1990. 265(6): p. 3293-303.
    22. Sie, Y.-S. and H.-S. Chuang, A micro-volume viscosity measurement technique based on μPIV diffusometry. Microfluidics and Nanofluidics, 2013.
    23. Santiago, J.G., et al., A particle image velocimetry system for microfluidics. Experiments in Fluids, 1998. 25(4): p. 316-319.
    24. Meinhart, C.D., S.T. Wereley, and J.G. Santiago, PIV measurements of a microchannel flow. Experiments in Fluids, 1999. 27(5): p. 414-419.
    25. Chuang, H.S., L.C. Gui, and S.T. Wereley, Nano-resolution flow measurement based on single pixel evaluation PIV. Microfluidics and Nanofluidics, 2012. 13(1): p. 49-64.
    26. Clark, A.T., M. Lal, and G.M. Watson, Dynamics of Colloidal Particles in the Vicinity of an Interacting Surface. Faraday Discussions, 1987. 83: p. 179-191.
    27. Olsen, M.G. and R.J. Adrian, Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Experiments in Fluids, 2000. 29: p. S166-S174.
    28. Chen, Y.M. and A.J. Pearlstein, Viscosity Temperature Correlation for Glycerol Water Solutions. Industrial & Engineering Chemistry Research, 1987. 26(8): p. 1670-1672.
    29. Belfer, S.J., et al., Caenorhabditis-in-Drop Array for Monitoring C. elegans Quiescent Behavior. Sleep, 2013. 36(5): p. 689-698.

    下載圖示 校內:立即公開
    校外:2018-09-13公開
    QR CODE