簡易檢索 / 詳目顯示

研究生: 錢仕賢
Chien, Shih-Hsien
論文名稱: 探討噻吩與聯噻吩架構共軛高分子之有序形貌排列:聚(3-己烷噻吩) 及Poly(3,6-dialkylthieno[3,2-b]thiophene-co-bithiophene)
Comparing the Morphological Alignment of Thiophene- and- Thienothiophene-based Conjugated Polymers :P3HT and PATBT
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 105
中文關鍵詞: 共軛高分子聚噻吩有序形貌分子間作用力
外文關鍵詞: Conjugated polymer, Polythiophene, Order morphology, Anisotropy
相關次數: 點閱:144下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 導電高分子為軟性電子材料,具備可撓、可塑形、薄膜化、與液相大面積製造的優勢,相對於矽,砷化鎵、氮化鎵、磷化銦等剛性、易碎、不可撓的無機半導體材料,軟性電子材料在穿戴裝置與物聯網應用中極具發展優勢。此外,有機半導體的主要成分為碳,相對大量使用砷、鎵、銦、硒等稀有元素的無機半導體,碳基半導體更環保、經濟、且具永續性.透過組合各種分子單元,可設計出符合應用需求的電子結構,成為未來新穎穿戴式電子元件的前瞻材料。
    本研究使用噻吩(thiophene)單元為基礎之共軛高分子,其結構中的含硫雜環相對於純碳基苯環,有更強的電子耦合與分子間作用力,因而形成相對有序的分子堆疊與非侷域電子結構,可提升有機薄膜的導電性;反之,當高分子鏈隨機排列,形貌缺陷阻礙載子傳導,將很大程度地降低載子遷移率。因此透過有序化排列導電高分子可更強化其載子傳導,成為改善高分子電子元件效能的重要手段。為探討分子間作用力與電子耦合對形貌與電子結構的影響,本研究將比較3-己烷噻吩(P3HT)與其衍生材料 Poly(3,6-dialkylthieno[3,2-b]thiophene-co-bithiophene) (PATBT)在不同製程參數下的巨觀形貌與微觀分子堆疊。相較於P3HT,PATBT的結構設計旨在利用熔接的噻吩單元(fused thiophene) 增加分子平面性(planity),使π軌域電子非局域化,藉此縮小高分子材料本身能隙寬度,提高其材料載子傳導能力;此外,高平面性的thieno[3,2-b]thiophene分子單元有很強的分子間作用力,可形成液晶相,因此有機會得到比P3HT更加有序的形貌。
    本論文利用”三明治結構”(Sandwich structure)的成膜系統,藉由控制玻璃間隔片與高分子溶液所產生之毛細拉力,在有奈米溝槽的基板表面定向排列高分子鏈,比較不同製程參數,如成膜溫度、溶劑種類、與表面能對兩種高分子排列行為的影響,藉以調控高分子之排列能力。巨觀上,利用原子力顯微鏡觀察高分子薄膜之纖維形貌。微觀上,藉由極化拉曼光譜量測垂直與平行奈米溝槽排列的分子振盪,利用相互垂直的雷射極化激發分子振盪,因此兩正交極化光的拉曼訊號強度比值可代表共軛高分子排列之異向性程度,意即高分子鏈在微觀尺度的有序程度。以溶質-溶劑分子間作用力的理論模型為基礎,我們不只成功排列出P3HT與PATBT高分子纖維,更得到可對應巨觀形貌的微觀分子排列,建立可系統化調控分子排列的實驗方法學。

    The semiconducting polymer materials draw researcher’s attention due to their device flexibility and solution process ability. Poly(3-hexylthiophene)(P3HT) and its derivatives are the most broadly applicable conjugated polymers such as organic thin-film transistors, organic photovoltaic devices, photodetectors, thermoelectric generators, etc. When considering device performance, charge mobility is an essential element; the higher mobility, the better performance. In organic thin films, random chain alignment impedes charge transport and results in low carrier mobility. Therefore controlling morphology is the key toward high performance organic electronics. This thesis utilizes a strategy called “sandwich casting” to produce unidirectional alignment in polymeric thin films. This method induce the anisotropic capillary force between glass spacers and polymer solution. Through this unique control in microscopic regime , the polymer chain can be uniaxially aligned along the nanogrooved substrate. Comparing different physical modulations such as process temperature and solvents, we developed a reliable methodology to control polymer morphology. Through the AFM images, the macroscopic morphology of polymers shows the fiber-like chain alignment. For microscopic investigation, the polarized Raman spectroscopy is applied. The intensity of Raman on the two polarized directions is quantitatively discussed and is correlated to the degree of anisotropy which indicates the level of uniaxially alignment in molecular level.

    Key words : Conjugated polymer, Polythiophene, Ordered morphology, anisotropy

    中文摘要 iii Abstract v 誌謝 ix 目錄 xi 圖目錄 xiii 表目錄 xviii 第一章、緒論 1 1.1研究動機 1 1.2研究背景與文獻回顧 2 1.2.1導電高分子 2 1.2.2自組裝單分子層(Self-Assembly Monolayer, SAM) 30 第二章、實驗部分 35 2.1實驗藥品與材料 35 2.2實驗裝置 35 2.3檢測儀器 36 2.4實驗流程 38 2.4.1基板預先處理階段 38 2.4.2自組裝單分子層沉積 39 2.4.3高分子P3HT和PATBT沉積 39 2.4.4 量測作業 41 第三章、結果與討論 45 3.1自組裝單分子層沉積 45 3.1.1紫外光臭氧照射時間與單分子層沉積時間 45 3.1.2自組裝單分子層沉積表面形貌 47 3.2共軛高分子PATBT及P3HT溶液吸收性質 48 3.2.1 PATBT溶液紫外光-可見光吸收性質 48 3.2.2 P3HT溶液紫外光-可見光吸收性質 49 3.3共軛高分子PATBT及P3HT薄膜極化拉曼光譜 50 3.3.1 PATBT薄膜極化拉曼光譜 51 3.3.2 P3HT薄膜極化拉曼光譜 70 3.4共軛高分子PATBT排列表面形貌 77 3.4.1氯苯/鄰二氯苯溶劑 77 3.4.2溴苯溶劑 82 第四章、結論 91 第五章、未來實驗方向 93 第六章、參考文獻 94

    1. McCulloch, I., M. Heeney, M.L. Chabinyc, D. DeLongchamp, R.J. Kline, M. Coelle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton, L. Richter, A. Salleo, M. Shkunov, D. Sporrowe, S. Tierney, and W. Zhong, Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin-Film Organic Transistors. Advanced Materials, 2009. 21(10-11): p. 1091-1109.
    2. Loewe, R.S., P.C. Ewbank, J. Liu, L. Zhai, and R.D. McCullough, Regioregular, head-to-tail coupled poly (3-alkylthiophenes) made easy by the GRIM method: Investigation of the reaction and the origin of regioselectivity. Macromolecules, 2001. 34(13): p. 4324-4333.
    3. Kline, R.J., D.M. DeLongchamp, D.A. Fischer, E.K. Lin, L.J. Richter, M.L. Chabinyc, M.F. Toney, M. Heeney, and I. McCulloch, Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules, 2007. 40(22): p. 7960-7965.
    4. Cho, C.-J., S.-Y. Chen, C.-C. Kuo, L. Veeramuthu, A.-N. Au-Duong, Y.-C. Chiu, and S.-H. Chang, Morphology and optoelectronic characteristics of organic field-effect transistors based on blends of polylactic acid and poly (3-hexylthiophene). Polymer Journal, 2018. 50(10): p. 975.
    5. Jimison, L.H., M.F. Toney, I. McCulloch, M. Heeney, and A. Salleo, Charge‐Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly (3‐hexylthiophene). Advanced Materials, 2009. 21(16): p. 1568-1572.
    6. Park, Y.D., H.S. Lee, Y.J. Choi, D. Kwak, J.H. Cho, S. Lee, and K. Cho, Solubility‐Induced Ordered Polythiophene Precursors for High‐Performance Organic Thin‐Film Transistors. Advanced Functional Materials, 2009. 19(8): p. 1200-1206.
    7. Luo, C., A.K.K. Kyaw, L.A. Perez, S. Patel, M. Wang, B. Grimm, G.C. Bazan, E.J. Kramer, and A.J. Heeger, General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano letters, 2014. 14(5): p. 2764-2771.
    8. McCulloch, I., C. Bailey, M. Giles, M. Heeney, I. Love, M. Shkunov, D. Sparrowe, and S. Tierney, Influence of molecular design on the field-effect transistor characteristics of terthiophene polymers. Chemistry of materials, 2005. 17(6): p. 1381-1385.
    9. DeLongchamp, D.M., R.J. Kline, E.K. Lin, D.A. Fischer, L.J. Richter, L.A. Lucas, M. Heeney, I. McCulloch, and J.E. Northrup, High carrier mobility polythiophene thin films: structure determination by experiment and theory. Advanced Materials, 2007. 19(6): p. 833-837.
    10. Burroughes, J.H., D.D. Bradley, A. Brown, R. Marks, K. Mackay, R.H. Friend, P. Burns, and A. Holmes, Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539.
    11. Xiao, B., A. Tang, J. Zhang, A. Mahmood, Z. Wei, and E. Zhou, Achievement of High Voc of 1.02 V for P3HT‐Based Organic Solar Cell Using a Benzotriazole‐Containing Non‐Fullerene Acceptor. Advanced Energy Materials, 2017. 7(8): p. 1602269.
    12. Baran, D., R.S. Ashraf, D.A. Hanifi, M. Abdelsamie, N. Gasparini, J.A. Röhr, S. Holliday, A. Wadsworth, S. Lockett, and M. Neophytou, Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature materials, 2017. 16(3): p. 363.
    13. Ganesamoorthy, R., G. Sathiyan, and P. Sakthivel, Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Solar Energy Materials and Solar Cells, 2017. 161: p. 102-148.
    14. Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews, 2009. 109(11): p. 5868-5923.
    15. Zhang, H., F. Zhang, J. Sun, M. Zhang, Y. Hu, Z. Lou, Y. Hou, and F. Teng, Solution-processed organic field-effect transistors with cross-linked poly (4-vinylphenol)/polyvinyl alcohol bilayer dielectrics. Applied Surface Science, 2019. 478: p. 699-707.
    16. Wang, C.L., H.L. Dong, W.P. Hu, Y.Q. Liu, and D.B. Zhu, Semiconducting pi-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews, 2012. 112(4): p. 2208-2267.
    17. Xu, J., S.H. Wang, G.J.N. Wang, C.X. Zhu, S.C. Luo, L.H. Jin, X.D. Gu, S.C. Chen, V.R. Feig, J.W.F. To, S. Rondeau-Gagne, J. Park, B.C. Schroeder, C. Lu, J.Y. Oh, Y.M. Wang, Y.H. Kim, H. Yan, R. Sinclair, D.S. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J.B.H. Tok, J.W. Chung, and Z.N. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017. 355(6320): p. 59-+.
    18. Hsu, B.B., J. Seifter, C.J. Takacs, C. Zhong, H.-R. Tseng, I.D. Samuel, E.B. Namdas, G.C. Bazan, F. Huang, and Y. Cao, Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors. Acs Nano, 2013. 7(3): p. 2344-2351.
    19. Nikolka, M., I. Nasrallah, B. Rose, M.K. Ravva, K. Broch, A. Sadhanala, D. Harkin, J. Charmet, M. Hurhangee, A. Brown, S. Illig, P. Too, J. Jongman, I. McCulloch, J.L. Bredas, and H. Sirringhaus, High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nature Materials, 2017. 16(3): p. 356-+.
    20. Liu, Y.C., C.S. Li, Z.J. Ren, S.K. Yan, and M.R. Bryce, All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nature Reviews Materials, 2018. 3(4): p. 20.
    21. Yang, Y., J. Ouyang, L.P. Ma, R.J.H. Tseng, and C.W. Chu, Electrical switching and bistability in organic/polymeric thin films and memory devices. Advanced Functional Materials, 2006. 16(8): p. 1001-1014.
    22. Liu, J.Q., Z.Y. Yin, X.H. Cao, F. Zhao, A.P. Lin, L.H. Xie, Q.L. Fan, F. Boey, H. Zhang, and W. Huang, Bulk Heterojunction Polymer Memory Devices with Reduced Graphene Oxide as Electrodes. Acs Nano, 2010. 4(7): p. 3987-3992.
    23. Heremans, P., G.H. Gelinck, R. Muller, K.J. Baeg, D.Y. Kim, and Y.Y. Noh, Polymer and Organic Nonvolatile Memory Devices. Chemistry of Materials, 2011. 23(3): p. 341-358.
    24. Lu, X., W. Zhang, C. Wang, T.-C. Wen, and Y. Wei, One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Progress in Polymer Science, 2011. 36(5): p. 671-712.
    25. Bao, Z., A. Dodabalapur, and A.J. Lovinger, Soluble and processable regioregular poly (3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied Physics Letters, 1996. 69(26): p. 4108-4110.
    26. Liu, C., K. Wang, X. Gong, and A.J. Heeger, Low bandgap semiconducting polymers for polymeric photovoltaics. Chemical Society Reviews, 2016. 45(17): p. 4825-4846.
    27. Loewe, R.S., P.C. Ewbank, J.S. Liu, L. Zhai, and R.D. McCullough, Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the GRIM method: Investigation of the reaction and the origin of regioselectivity. Macromolecules, 2001. 34(13): p. 4324-4333.
    28. Verploegen, E., R. Mondal, C.J. Bettinger, S. Sok, M.F. Toney, and Z.A. Bao, Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends. Advanced Functional Materials, 2010. 20(20): p. 3519-3529.
    29. Brinkmann, M., Structure and Morphology Control in Thin Films of Regioregular Poly(3-hexylthiophene). Journal of Polymer Science Part B-Polymer Physics, 2011. 49(17): p. 1218-1233.
    30. Guinier, A., X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. 1994: Courier Corporation.
    31. Skrypnychuk, V., N. Boulanger, V. Yu, M. Hilke, S.C. Mannsfeld, M.F. Toney, and D.R. Barbero, Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene. Advanced Functional Materials, 2015. 25(5): p. 664-670.
    32. Mazzio, K.A., A.H. Rice, M.M. Durban, and C.K. Luscombe, Effect of regioregularity on charge transport and structural and excitonic coherence in poly (3-hexylthiophene) nanowires. The Journal of Physical Chemistry C, 2015. 119(27): p. 14911-14918.
    33. Chang, M., D. Choi, G. Wang, N. Kleinhenz, N. Persson, B. Park, and E. Reichmanis, Photoinduced anisotropic assembly of conjugated polymers in insulating polymer blends. ACS applied materials & interfaces, 2015. 7(25): p. 14095-14103.
    34. Müller‐Buschbaum, P., The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Advanced materials, 2014. 26(46): p. 7692-7709.
    35. Kim, H.J., J.H. Park, H.H. Lee, D.R. Lee, and J.-J. Kim, The effect of Al electrodes on the nanostructure of poly (3-hexylthiophene): Fullerene solar cell blends during thermal annealing. Organic Electronics, 2009. 10(8): p. 1505-1510.
    36. Hartmann, L., K. Tremel, S. Uttiya, E. Crossland, S. Ludwigs, N. Kayunkid, C. Vergnat, and M. Brinkmann, 2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy. Advanced Functional Materials, 2011. 21(21): p. 4047-4057.
    37. McCulloch, I., M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, and W. Zhang, Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature materials, 2006. 5(4): p. 328.
    38. Chabinyc, M.L., M.F. Toney, R.J. Kline, I. McCulloch, and M. Heeney, X-ray scattering study of thin films of poly (2, 5-bis (3-alkylthiophen-2-yl) thieno [3, 2-b] thiophene). Journal of the American Chemical Society, 2007. 129(11): p. 3226-3237.
    39. Kline, R.J., D.M. DeLongchamp, D.A. Fischer, E.K. Lin, M. Heeney, I. McCulloch, and M.F. Toney, Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Applied physics letters, 2007. 90(6): p. 062117.
    40. Rivnay, J., S.C. Mannsfeld, C.E. Miller, A. Salleo, and M.F. Toney, Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chemical reviews, 2012. 112(10): p. 5488-5519.
    41. Yuan, K., L. Chen, and Y. Chen, Direct anisotropic growth of CdS nanocrystals in thermotropic liquid crystal templates for heterojunction optoelectronics. Chemistry–A European Journal, 2014. 20(36): p. 11488-11495.
    42. Savenije, T.J., W.J. Grzegorczyk, M. Heeney, S. Tierney, I. McCulloch, and L.D. Siebbeles, Photoinduced charge carrier generation in blends of poly (thienothiophene) derivatives and [6, 6]-phenyl-C61-butyric acid methyl ester: phase segregation versus intercalation. The Journal of Physical Chemistry C, 2010. 114(35): p. 15116-15120.
    43. Jamieson, F.C., E.B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, and J.R. Durrant, Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chemical Science, 2012. 3(2): p. 485-492.
    44. Dyreklev, P., G. Gustafsson, O. Inganäs, and H. Stubb, Aligned polymer chain field effect transistors. Solid state communications, 1992. 82(5): p. 317-320.
    45. Wittmann, J.C. and P. Smith, Highly oriented thin films of poly (tetrafluoroethylene) as a substrate for oriented growth of materials. Nature, 1991. 352(6334): p. 414.
    46. Nagamatsu, S., W. Takashima, K. Kaneto, Y. Yoshida, N. Tanigaki, and K. Yase, Polymer field-effect transistors by a drawing method. Applied physics letters, 2004. 84(23): p. 4608-4610.
    47. Karakawa, M., M. Chikamatsu, Y. Yoshida, M. Oishi, R. Azumi, and K. Yase, High-performance poly (3-hexylthiophene) field-effect transistors fabricated by a slide-coating method. Applied physics express, 2008. 1(6): p. 061802.
    48. Tanigaki, N., H. Kyotani, M. Wada, A. Kaito, Y. Yoshida, E.-M. Han, K. Abe, and K. Yase, Oriented thin films of conjugated polymers: polysilanes and polyphenylenes. Thin Solid Films, 1998. 331(1-2): p. 229-238.
    49. Wegner, G., Ultrathin films of polymers: architecture, characterization and properties. Thin Solid Films, 1992. 216(1): p. 105-116.
    50. Olivati, C., V. Gonçalves, and D.T. Balogh, Optically anisotropic and photoconducting Langmuir–Blodgett films of neat poly (3-hexylthiophene). Thin Solid Films, 2012. 520(6): p. 2208-2210.
    51. Paloheimo, J., P. Kuivalainen, H. Stubb, E. Vuorimaa, and P. Yli‐Lahti, Molecular field‐effect transistors using conducting polymer Langmuir–Blodgett films. Applied physics letters, 1990. 56(12): p. 1157-1159.
    52. Xu, G., Z. Bao, and J.T. Groves, Langmuir− Blodgett films of regioregular poly (3-hexylthiophene) as field-effect transistors. Langmuir, 2000. 16(4): p. 1834-1841.
    53. Hamaguchi, M. and K. Yoshino, Rubbing-induced molecular orientation and polarized electroluminescence in conjugated polymer. Japanese journal of applied physics, 1995. 34(6A): p. L712.
    54. Sirringhaus, H., R. Wilson, R. Friend, M. Inbasekaran, W. Wu, E. Woo, M. Grell, and D. Bradley, Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Applied Physics Letters, 2000. 77(3): p. 406-408.
    55. Biniek, L., S. Pouget, D. Djurado, E. Gonthier, K. Tremel, N. Kayunkid, E. Zaborova, N. Crespo-Monteiro, O. Boyron, N. Leclerc, S. Ludwigs, and M. Brinkmann, High-Temperature Rubbing: A Versatile Method to Align pi-Conjugated Polymers without Alignment Substrate. Macromolecules, 2014. 47(12): p. 3871-3879.
    56. Chou, W.Y. and H.L. Cheng, An Orientation‐Controlled Pentacene Film Aligned by Photoaligned Polyimide for Organic Thin‐Film Transistor Applications. Advanced Functional Materials, 2004. 14(8): p. 811-815.
    57. Ye, L., Y. Xiong, H. Yao, A. Gadisa, H. Zhang, S. Li, M. Ghasemi, N. Balar, A. Hunt, and B.T. O’Connor, High performance organic solar cells processed by blade coating in air from a benign food additive solution. Chemistry of Materials, 2016. 28(20): p. 7451-7458.
    58. Wang, T., A.D. Dunbar, P.A. Staniec, A.J. Pearson, P.E. Hopkinson, J.E. MacDonald, S. Lilliu, C. Pizzey, N.J. Terrill, and A.M. Donald, The development of nanoscale morphology in polymer: fullerene photovoltaic blends during solvent casting. Soft Matter, 2010. 6(17): p. 4128-4134.
    59. Byun, W.B., S.K. Lee, J.C. Lee, S.J. Moon, and W.S. Shin, Bladed organic photovoltaic cells. Current Applied Physics, 2011. 11(1): p. S179-S184.
    60. Søndergaard, R., M. Hösel, D. Angmo, T.T. Larsen-Olsen, and F.C. Krebs, Roll-to-roll fabrication of polymer solar cells. Materials today, 2012. 15(1-2): p. 36-49.
    61. Chang, Y.-H., S.-R. Tseng, C.-Y. Chen, H.-F. Meng, E.-C. Chen, S.-F. Horng, and C.-S. Hsu, Polymer solar cell by blade coating. Organic Electronics, 2009. 10(5): p. 741-746.
    62. Ro, H.W., J.M. Downing, S. Engmann, A.A. Herzing, D.M. DeLongchamp, L.J. Richter, S. Mukherjee, H. Ade, M. Abdelsamie, and L.K. Jagadamma, Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy & Environmental Science, 2016. 9(9): p. 2835-2846.
    63. Shin, N., L.J. Richter, A.A. Herzing, R.J. Kline, and D.M. DeLongchamp, Effect of Processing Additives on the Solidification of Blade‐Coated Polymer/Fullerene Blend Films via In‐Situ Structure Measurements. Advanced Energy Materials, 2013. 3(7): p. 938-948.
    64. Becerril, H.A., M.E. Roberts, Z. Liu, J. Locklin, and Z. Bao, High‐Performance Organic Thin‐Film Transistors through Solution‐Sheared Deposition of Small‐Molecule Organic Semiconductors. Advanced Materials, 2008. 20(13): p. 2588-2594.
    65. Ito, Y., A.A. Virkar, S. Mannsfeld, J.H. Oh, M. Toney, J. Locklin, and Z. Bao, Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. Journal of the American Chemical Society, 2009. 131(26): p. 9396-9404.
    66. Giri, G., D.M. DeLongchamp, J. Reinspach, D.A. Fischer, L.J. Richter, J. Xu, S. Benight, A. Ayzner, M. He, and L. Fang, Effect of solution shearing method on packing and disorder of organic semiconductor polymers. Chemistry of Materials, 2015. 27(7): p. 2350-2359.
    67. DeLongchamp, D.M., R.J. Kline, Y. Jung, E.K. Lin, D.A. Fischer, D.J. Gundlach, S.K. Cotts, A.J. Moad, L.J. Richter, and M.F. Toney, Molecular basis of mesophase ordering in a thiophene-based copolymer. Macromolecules, 2008. 41(15): p. 5709-5715.
    68. Tracz, A., T. Pakula, and J.K. Jeszka, Zone casting-a universal method of preparing oriented anisotropic layers of organic materials. Materials Science-Poland, 2004. 22(4): p. 415-421.
    69. Smith, P.A., C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, and T.E. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters, 2000. 77(9): p. 1399-1401.
    70. Cao, Y., W. Liu, J. Sun, Y. Han, J. Zhang, S. Liu, H. Sun, and J. Guo, A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology, 2006. 17(9): p. 2378.
    71. Misewich, J., R. Martel, P. Avouris, J. Tsang, S. Heinze, and J. Tersoff, Electrically induced optical emission from a carbon nanotube FET. Science, 2003. 300(5620): p. 783-786.
    72. Nagahara, L.A., I. Amlani, J. Lewenstein, and R.K. Tsui, Directed placement of suspended carbon nanotubes for nanometer-scale assembly. Applied Physics Letters, 2002. 80(20): p. 3826-3828.
    73. Mas-Torrent, M., D. Den Boer, M. Durkut, P. Hadley, and A.P. Schenning, Field effect transistors based on poly (3-hexylthiophene) at different length scales. Nanotechnology, 2004. 15(4): p. S265.
    74. Zhou, W., J. Shi, L. Lv, L. Chen, and Y. Chen, A mechanistic investigation of morphology evolution in P3HT–PCBM films induced by liquid crystalline molecules under external electric field. Physical Chemistry Chemical Physics, 2015. 17(1): p. 387-397.
    75. Khim, D., H. Han, K.J. Baeg, J. Kim, S.W. Kwak, D.Y. Kim, and Y.Y. Noh, Simple Bar‐Coating Process for Large‐Area, High‐Performance Organic Field‐Effect Transistors and Ambipolar Complementary Integrated Circuits. Advanced Materials, 2013. 25(31): p. 4302-4308.
    76. Yabuuchi, Y., G. Uzurano, M. Nakatani, A. Fujii, and M. Ozaki, Uniaxial orientation of poly (3-hexylthiophene) thin films fabricated by the bar-coating method. Japanese Journal of Applied Physics, 2019. 58(SB): p. SBBG04.
    77. Lee, B.H., B.B. Hsu, S.N. Patel, J. Labram, C. Luo, G.C. Bazan, and A.J. Heeger, Flexible organic transistors with controlled nanomorphology. Nano letters, 2015. 16(1): p. 314-319.
    78. Clark, J., C. Silva, R.H. Friend, and F.C. Spano, Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Physical review letters, 2007. 98(20): p. 206406.
    79. Spano, F.C., Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly (3-hexylthiophene) thin films. The Journal of chemical physics, 2005. 122(23): p. 234701.
    80. Spano, F.C. and C. Silva, H-and J-aggregate behavior in polymeric semiconductors. Annual review of physical chemistry, 2014. 65: p. 477-500.
    81. Chaudhary, V., R.K. Pandey, R. Prakash, and A.K. Singh, Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode. Journal of Applied Physics, 2017. 122(22): p. 225501.
    82. Niles, E.T., J.D. Roehling, H. Yamagata, A.J. Wise, F.C. Spano, A.J. Moulé, and J.K. Grey, J-aggregate behavior in poly-3-hexylthiophene nanofibers. The Journal of Physical Chemistry Letters, 2012. 3(2): p. 259-263.
    83. Wang, W., S. Guo, E.M. Herzig, K. Sarkar, M. Schindler, D. Magerl, M. Philipp, J. Perlich, and P. Müller-Buschbaum, Investigation of morphological degradation of P3HT: PCBM bulk heterojunction films exposed to long-term host solvent vapor. Journal of Materials Chemistry A, 2016. 4(10): p. 3743-3753.
    84. Clark, J., J.-F. Chang, F.C. Spano, R.H. Friend, and C. Silva, Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Applied Physics Letters, 2009. 94(16): p. 117.
    85. Brown, P.J., D.S. Thomas, A. Köhler, J.S. Wilson, J.-S. Kim, C.M. Ramsdale, H. Sirringhaus, and R.H. Friend, Effect of interchain interactions on the absorption and emission of poly (3-hexylthiophene). Physical Review B, 2003. 67(6): p. 064203.
    86. Savenije, T.J., J.E. Kroeze, X. Yang, and J. Loos, The formation of crystalline P3HT fibrils upon annealing of a PCBM: P3HT bulk heterojunction. Thin Solid Films, 2006. 511: p. 2-6.
    87. Liem, H., P. Etchegoin, K. Whitehead, and D. Bradley, Raman scattering as a probe of morphology in conjugated polymer thin films. Journal of applied physics, 2002. 92(2): p. 1154-1161.
    88. Liem, H.M., P. Etchegoin, K.S. Whitehead, and D.D. Bradley, Raman anisotropy measurements: An effective probe of molecular orientation in conjugated polymer thin films. Advanced Functional Materials, 2003. 13(1): p. 66-72.
    89. Liem, H., P. Etchegoin, and D. Bradley, Anomalous Raman scattering from the surface of conjugated polymer melts. Physical Review B, 2001. 64(14): p. 144209.
    90. Sims, M., S. Tuladhar, J. Nelson, R. Maher, M. Campoy-Quiles, S. Choulis, M. Mairy, D. Bradley, P. Etchegoin, and C. Tregidgo, Correlation between microstructure and charge transport in poly (2, 5-dimethoxy-p-phenylenevinylene) thin films. Physical Review B, 2007. 76(19): p. 195206.
    91. Duong, D.T., B. Walker, J. Lin, C. Kim, J. Love, B. Purushothaman, J.E. Anthony, and T.Q. Nguyen, Molecular solubility and hansen solubility parameters for the analysis of phase separation in bulk heterojunctions. Journal of Polymer Science Part B: Polymer Physics, 2012. 50(20): p. 1405-1413.
    92. Machui, F., S. Abbott, D. Waller, M. Koppe, and C.J. Brabec, Determination of solubility parameters for organic semiconductor formulations. Macromolecular chemistry and Physics, 2011. 212(19): p. 2159-2165.
    93. Machui, F., S. Langner, X. Zhu, S. Abbott, and C.J. Brabec, Determination of the P3HT: PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance. Solar Energy Materials and Solar Cells, 2012. 100: p. 138-146.
    94. Lee, S.H., N. Saito, and O. Takai, The importance of precursor molecules symmetry in the formation of self-assembled monolayers. Japanese journal of applied physics, 2007. 46(3R): p. 1118.
    95. Wang, M., K.M. Liechti, Q. Wang, and J. White, Self-assembled silane monolayers: fabrication with nanoscale uniformity. Langmuir, 2005. 21(5): p. 1848-1857.
    96. Srinivasan, U., M.R. Houston, R. Rowe, and R. Maboudian. Self-assembled fluorocarbon films for enhanced stiction reduction. in Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97). 1997. IEEE.
    97. Srinivasan, U., M.R. Houston, R.T. Howe, and R. Maboudian, Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines. Journal of Microelectromechanical Systems, 1998. 7(2): p. 252-260.
    98. Bliznyuk, V.N., M.P. Everson, and V.V. Tsukruk, Nanotribological properties of organic boundary lubricants: Langmuir films versus self-assembled monolayers. Journal of Tribology, 1998. 120(3): p. 489-495.
    99. Zhang, Q. and L.A. Archer, Boundary lubrication and surface mobility of mixed alkylsilane self-assembled monolayers. The Journal of Physical Chemistry B, 2003. 107(47): p. 13123-13132.
    100. Jung, G.-Y., Z. Li, W. Wu, Y. Chen, D.L. Olynick, S.-Y. Wang, W.M. Tong, and R.S. Williams, Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir, 2005. 21(4): p. 1158-1161.
    101. Ashurst, W.R., C. Yau, C. Carraro, R. Maboudian, and M.T. Dugger, Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlorosilane self-assembled monolayer. Journal of Microelectromechanical Systems, 2001. 10(1): p. 41-49.
    102. Maboudian, R., W.R. Ashurst, and C. Carraro, Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sensors and Actuators A: Physical, 2000. 82(1-3): p. 219-223.
    103. Britt, D.W. and V. Hlady, An AFM study of the effects of silanization temperature, hydration, and annealing on the nucleation and aggregation of condensed OTS domains on mica. Journal of colloid and interface science, 1996. 178(2): p. 775-784.
    104. Roscioni, O.M., L. Muccioli, A. Mityashin, J.r.m. Cornil, and C. Zannoni, Structural characterization of alkylsilane and fluoroalkylsilane self-assembled monolayers on SiO2 by molecular dynamics simulations. The Journal of Physical Chemistry C, 2016. 120(27): p. 14652-14662.
    105. Tidswell, I., T. Rabedeau, P.S. Pershan, S. Kosowsky, J. Folkers, and G.M. Whitesides, X‐ray grazing incidence diffraction from alkylsiloxane monolayers on silicon wafers. The Journal of chemical physics, 1991. 95(4): p. 2854-2861.
    106. Lee, H.S., D.H. Kim, J.H. Cho, M. Hwang, Y. Jang, and K. Cho, Effect of the phase states of self-assembled monolayers on pentacene growth and thin-film transistor characteristics. Journal of the American Chemical Society, 2008. 130(32): p. 10556-10564.
    107. Shankar, K. and T.N. Jackson, Morphology and electrical transport in pentacene films on silylated oxide surfaces. Journal of materials research, 2004. 19(7): p. 2003-2007.
    108. Hamadani, B., D. Corley, J.W. Ciszek, J. Tour, and D. Natelson, Controlling charge injection in organic field-effect transistors using self-assembled monolayers. Nano letters, 2006. 6(6): p. 1303-1306.
    109. Hu, W., Y. Tao, Y. Hsu, D. Wei, and Y. Wu, Molecular orientation of evaporated pentacene films on gold: Alignment effect of self-assembled monolayer. Langmuir, 2005. 21(6): p. 2260-2266.
    110. Lin, Y.-Y., D. Gundlach, S. Nelson, and T. Jackson, Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Letters, 1997. 18(12): p. 606-608.
    111. Gundlach, D., J. Nichols, L. Zhou, and T. Jackson, Thin-film transistors based on well-ordered thermally evaporated naphthacene films. Applied Physics Letters, 2002. 80(16): p. 2925-2927.
    112. Kim, D.H., Y.D. Park, Y. Jang, H. Yang, Y.H. Kim, J.I. Han, D.G. Moon, S. Park, T. Chang, and C. Chang, Enhancement of field‐effect mobility due to surface‐mediated molecular ordering in regioregular polythiophene thin film transistors. Advanced Functional Materials, 2005. 15(1): p. 77-82.
    113. Kobayashi, S., T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nature materials, 2004. 3(5): p. 317.
    114. Boulas, C., J. Davidovits, F. Rondelez, and D. Vuillaume, Suppression of charge carrier tunneling through organic self-assembled monolayers. Physical review letters, 1996. 76(25): p. 4797.
    115. Vuillaume, D., C. Boulas, J. Collet, J. Davidovits, and F. Rondelez, Organic insulating films of nanometer thicknesses. Applied Physics Letters, 1996. 69(11): p. 1646-1648.
    116. Kim, D.H., J.T. Han, Y.D. Park, Y. Jang, J.H. Cho, M. Hwang, and K. Cho, Single‐crystal polythiophene microwires grown by self‐assembly. Advanced Materials, 2006. 18(6): p. 719-723.
    117. Zschieschang, U., F. Ante, M. Schlörholz, M. Schmidt, K. Kern, and H. Klauk, Mixed self‐assembled monolayer gate dielectrics for continuous threshold voltage control in organic transistors and circuits. Advanced Materials, 2010. 22(40): p. 4489-4493.
    118. Lei, Y., B. Wu, W.-K.E. Chan, F. Zhu, and B.S. Ong, Engineering gate dielectric surface properties for enhanced polymer field-effect transistor performance. Journal of Materials Chemistry C, 2015. 3(47): p. 12267-12272.
    119. Drelich, J., E. Chibowski, D.D. Meng, and K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials. Soft Matter, 2011. 7(21): p. 9804-9828.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE