| 研究生: |
鍾文浩 Chung, Wen-Hao |
|---|---|
| 論文名稱: |
氧化石墨烯量子點應用於鈣鈦礦太陽能電池之研究 Application of Graphene Oxide Quantum Dots on Perovskite Solar Cell |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 氧化石墨烯量子點 、鈣鈦礦太陽能電池 |
| 外文關鍵詞: | Graphene Oxide Quantum Dots, Mixed Halide Perovskite Solar Cells |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇首先以研究氯混摻對於鈣鈦礦太陽能電池之影響,進而了解鈣鈦礦之物理與電性。憑藉組裝固態鈣鈦礦太陽能電池之經驗,目標為將氧化石墨烯量子點取代鈣鈦礦作為吸收層應用於太陽能電池。
本篇將甲基胺氯混入甲基胺碘/異丙醇之溶液,並利用兩步連續沉積法將此混合溶液旋轉塗佈於碘化鉛上反應,經由100℃鍛燒兩小時後形成氯混摻之鈣鈦礦太陽能電池。
研究分析方面,本篇藉由XRD繞射分析與SEM分析探討鈣鈦礦之結晶組成與表面形態的變化;以紫外-可見光吸收光譜與量子效率量測系統分析鈣鈦礦於特定入射光波長下之吸收與光電流關係;分別利用I-V特性曲線、IMPS與IMVS以了解鈣鈦礦之電池特性、電子傳遞時間及電子生存時間。
經由XRD繞射分析發現,氯的混摻並不會改變鈣鈦礦的結晶組成;而從SEM中可看出,氯的混摻能使鈣鈦礦表面形態更為緻密,減少漏電途徑,同時使鈣鈦礦具有更大的結晶粒徑,有效地提升電子傳遞速率。
由紫外-可見光吸收光譜得知,氯的混摻對於鈣鈦礦吸收強度與吸收曲線特徵並無影響,其Onset Wavelength位置約於800 nm ( 能隙約為1.55 eV );吸收峰位於藍光區與量子效率量測之光電流趨勢吻合。
根據I-V測試,藉由氯的混摻可將光電流由11.6 mA/cm2提升至17.1 mA/cm2,為轉換效率由6.53 %提升至10.4 %之主因。由紫外-可見光吸收光譜與IMPS結果可說明,光電流的提升主要於源於更短的電子傳遞時間而非吸光量的改變。同時,由IMPS之結果可發現鈣鈦礦擔載於二氧化鈦時,電子具有兩種傳遞模式:其一,電子經由鈣鈦礦導帶被工作電極收集後傳出外電路;其二,電子經由鈣鈦礦導帶注入到二氧化鈦導帶後,傳遞至工作電極再導向外電路。另外,由IMVS分析結果可知,氯的混摻得以延長電子生存時間與SEM之結果相符。然而,由IMVS分析我們無法找到可對應兩種電子傳遞模式的電子再結合模式。
最後,本篇嘗試將氧化石墨烯量子點應用於混合異質接面型鈣鈦礦太陽能電池結構,並藉由混入PCPDTBT高分子幫助電子電洞對分離與傳導,同時補足氧化石墨烯量子點的低紅光吸收。由I-V特性曲線可看出其暗電流於高電位差處並無下降趨勢,表示有其它行為產生正電流。進一步經由正向掃描的開關光I-V測試,其結果顯示氧化石墨烯量子點太陽能電池內部於0.49伏特下有PN性質的轉換,而引發此種轉換之原因仍有待更深入地探討。
In this report, we present the planar heterojunction prerovskite solar cell based on the modified sequential deposition method. We emphasized that the chloride doping in precursor is crucial to the morphology of perovskite. By means of the experience, an attempt was then made on graphene oxide quantum dots (GOQDs), which is more environment- friendly and better humidity-tolerance. With chloride doping, over 50% promotion of power conversion efficiency (PCE) was achieved due to higher photocurrent. Accord- ing to the SEM, IMPS and IMVS results, the advanced parameters was mainly influenced by the better perovskite crystallinity, leading to shorter electron transit time (τd ) and longer electron life time (τn ). Besides, GOQDs mixed with fullerene and Poly[2,6-(4,4-bis-(2-ethyl-hexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithio-phene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) was functioned as interlayer in solar cells. Eventually, 0.25 mA/cm2 photocurrent was attained, accompanying an interesting P-N property exchange pending further discussion.
[1] M. Grätzel, "Photoelectrochemical cells," Nature vol. 414, p. 7, 2001.
[2] S.R.Wenham and M.A.Green, "Silicon Solar Cells," progress in photovoltaics research and applications, vol. 4, 1996.
[3] BRIAN O'REGAN and MICHAEL GRÄTZEL, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, p. 4, 1991.
[4] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and a. T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," JACS, vol. 131, p. 2, 2009.
[5] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Sci Rep, vol. 2, p. 591, 2012.
[6] "http://ezphysics.nchu.edu.tw/prophys/electron/data/diode.PDF."
[7] "http://photovoltaicell.com/photovoltaic-cells-p-n-junctions/."
[8] "http://www.nrel.gov/."
[9] "http://xue.souips.com/content-43-563-1.html."
[10] "http://beaver.ncnu.edu.tw/."
[11] R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, and G. Wolf, "Hydrogen storage by carbon materials," Journal of Power Sources, vol. 159, pp. 781-801, 2006.
[12] F. Valencia, A. H. Romero, F. Ancilotto, and J. P. L. Silvestrelli, "Lithium Adsorption on Graphite from Density Functional Theory Calculations," Phys.Chem.B, vol. 110, p. 10, 2006.
[13] N. B. Hannay, T. H. Geballe, B. T. Matthias, K. Andres, P. Schmidt, and D. MacNair, "Superconductivity in Graphitic Compounds," Physical Review Letters, vol. 14, pp. 225-226, 1965.
[14] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, "Thin-film particles of graphite oxide 1," Carbon, vol. 42, pp. 2929-2937, 2004.
[15] M. V. Rama Krishna and R. A. Friesner, "Quantum confinement effects in semiconductor clusters," The Journal of Chemical Physics, vol. 95, pp. 8309-8322, 1991.
[16] K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, "Graphene oxide as a chemically tunable platform for optical applications," Nat Chem, vol. 2, pp. 1015-1024, 12//print 2010.
[17] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, et al., "Compositional engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, pp. 476-80, Jan 22 2015.
[18] T. Leijtens, B. Lauber, G. E. Eperon, S. D. Stranks, and H. J. Snaith, "The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells," The Journal of Physical Chemistry Letters, vol. 5, pp. 1096-1102, 2014.
[19] A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, et al., "Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells," Nature Photonics, vol. 8, pp. 250-255, 2014.
[20] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, et al., "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors," Nature Photonics, vol. 7, pp. 486-491, 2013.
[21] D. B. Mitzi, C. A. Feild, Z. Schlesinger, and R. B. Laibowitz, "Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3," solid state chemistry, vol. 114, p. 5, 1994.
[22] Tomas Leijtens, Samuel D. Stranks, Giles E. Eperon, Rebecka Lindblad, Erik M. J. Johansson, Ian J. McPherson, et al., "Electronic Properties of Meso-Superstructured and Planar Organometal Halide Perovskite Films Charge Trapping Photodoping and Carrier Mobility," ACSNANO, vol. 8, p. 9, 2014.
[23] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, vol. 338, pp. 643-7, Nov 2 2012.
[24] Y. Zhao and K. Zhu, "Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells," The Journal of Physical Chemistry Letters, vol. 5, pp. 4175-4186, 2014.
[25] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-8, Sep 19 2013.
[26] W. A. Laban and L. Etgar, "Depleted hole conductor-free lead halide iodide heterojunction solar cells," Energy & Environmental Science, vol. 6, p. 3249, 2013.
[27] J. G. G. Yu, J. C. Hummelen, and A. J. H. F. Wudl, "Polymer Photovoltaic Cells Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions," Science, vol. 270, p. 3, 1995.
[28] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, et al., "CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells," Adv Mater, vol. 25, pp. 3727-32, Jul 19 2013.
[29] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, et al., "Perovskite solar cells employing organic charge-transport layers," Nature Photonics, vol. 8, pp. 128-132, 2013.
[30] N.-G. Park, "Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell," The Journal of Physical Chemistry Letters, vol. 4, pp. 2423-2429, 2013.
[31] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, et al., "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, vol. 395, pp. 583-585, 10/08/print 1998.
[32] J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, et al., "Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells," Nano Lett, vol. 14, pp. 724-30, Feb 12 2014.
[33] H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, et al., "High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer," Nano Lett, vol. 13, pp. 2412-7, Jun 12 2013.
[34] S. Dharani, H. K. Mulmudi, N. Yantara, P. T. Thu Trang, N. G. Park, M. Graetzel, et al., "High efficiency electrospun TiO(2) nanofiber based hybrid organic-inorganic perovskite solar cell," Nanoscale, vol. 6, pp. 1675-9, 2014.
[35] G. Murugadoss, G. Mizuta, S. Tanaka, H. Nishino, T. Umeyama, H. Imahori, et al., "Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting," APL Materials, vol. 2, p. 081511, 2014.
[36] A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Jen, and H. J. Snaith, "High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers," Nano Lett, vol. 13, pp. 3124-8, Jul 10 2013.
[37] P. Qin, A. L. Domanski, A. K. Chandiran, R. Berger, H. J. Butt, M. I. Dar, et al., "Yttrium-substituted nanocrystalline TiO(2) photoanodes for perovskite based heterojunction solar cells," Nanoscale, vol. 6, pp. 1508-14, 2014.
[38] K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. Diau, C. H. Tsai, et al., "p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells," Sci Rep, vol. 4, p. 4756, 2014.
[39] D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature Photonics, vol. 8, pp. 133-138, 2013.
[40] D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, et al., "Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures," RSC Advances, vol. 3, p. 18762, 2013.
[41] E. Fabbri, D. Pergolesi, and E. Traversa, "Materials challenges toward proton-conducting oxide fuel cells: a critical review," Chem Soc Rev, vol. 39, pp. 4355-69, Nov 2010.
[42] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, et al., "Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells," The Journal of Physical Chemistry C, vol. 118, pp. 16458-16462, 2014.
[43] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, et al., "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications," Energy & Environmental Science, vol. 7, p. 3061, 2014.
[44] P. Docampo, F. C. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, et al., "Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells," Advanced Energy Materials, vol. 4, pp. n/a-n/a, 2014.
[45] R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, et al., "Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition," The Journal of Physical Chemistry C, vol. 119, pp. 3545-3549, 2015.
[46] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells," Nano Lett, vol. 13, pp. 1764-9, Apr 10 2013.
[47] S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, et al., "MAPbI3-xClxMixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties," Chemistry of Materials, vol. 25, pp. 4613-4618, 2013.
[48] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, et al., "Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3," Science, vol. 342, pp. 344-7, Oct 18 2013.
[49] Song-Rim Jang, Kai Zhu, Min Jae Ko, Kyungkon Kim, Chulhee Kim, Nam-Gyu Park, et al., "Voltage-Enhancement Mechanisms of an Organic Dye in High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells," ACSNANO, vol. 10, p. 8, 2011.
[50] J.-H. Im, H.-S. Kim, and N.-G. Park, "Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3," Apl Materials, vol. 2, p. 081510, 2014.
[51] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells," Nat Mater, vol. 13, pp. 897-903, Sep 2014.
[52] Kangning Liang, David B. Mitzi, and M. T. Prikas, "Synthesis and Characterization of Organic-Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique," Chem.Mater., vol. 10, p. 9, 1998.
[53] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-9, Jul 18 2013.
[54] Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, et al., "Retarding the crystallization of PbI2for highly reproducible planar-structured perovskite solar cells via sequential deposition," Energy & Environmental Science, vol. 7, p. 2934, 2014.
[55] N. Li, H. Dong, H. Dong, J. Li, W. Li, G. Niu, et al., "Multifunctional perovskite capping layers in hybrid solar cells," Journal of Materials Chemistry A, vol. 2, p. 14973, 2014.
[56] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, p. 2619, 2014.
[57] J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, et al., "Moisture assisted perovskite film growth for high performance solar cells," Applied Physics Letters, vol. 105, p. 183902, 2014.
[58] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 542-6, Aug 1 2014.
[59] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, and D. G. Lidzey, "Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition," Energy & Environmental Science, vol. 7, p. 2944, 2014.
[60] J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Yi, et al., "Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells," J Am Chem Soc, vol. 133, pp. 18042-5, Nov 16 2011.
[61] N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee, et al., "o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells," J Am Chem Soc, vol. 136, pp. 7837-40, Jun 4 2014.
[62] J. A. Christians, R. C. Fung, and P. V. Kamat, "An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide," J Am Chem Soc, vol. 136, pp. 758-64, Jan 15 2014.
[63] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, et al., "Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency," Nat Commun, vol. 5, p. 3834, 2014.
[64] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, et al., "A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability," Science, vol. 345, pp. 295-8, Jul 18 2014.
[65] William S. Hummers Jr. and R. E. Offeman, "Preparation of Graphitic Oxide," J. Am. Chem. Soc., p. 1, 1958.
[66] S. Zhuo, M. Shao, and S.-T. Lee, "Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis," ACS Nano, vol. 6, pp. 1059-1064, 2012/02/28 2012.
[67] J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, and L. M. Peter, "Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy," The Journal of Physical Chemistry B, vol. 107, pp. 7536-7539, 2003/08/01 2003.
[68] B. D. Cullity and S. R. Stock, "Elements of X-Ray Diffraction," Prentice, vol. 3rd ed, 2001.
[69] C. Kittel, "Introduction to Solid State Physics," Wiley, vol. 4th ed, 1971.
[70] M. Yan, F. Chen, J. Zhang, and M. Anpo, "Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties," The Journal of Physical Chemistry B, vol. 109, pp. 8673-8678, 2005/05/01 2005.
[71] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, "Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures," The Journal of Physical Chemistry B, vol. 103, pp. 630-640, 1999/01/01 1999.
[72] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, et al., "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993/07/01 1993.
[73] G. Xue, X. Yu, T. Yu, C. Bao, J. Zhang, J. Guan, et al., "Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum," Journal of Physics D: Applied Physics, vol. 45, p. 425104, 2012.
[74] p-OLED, "http://www.p-oled.cn/en/product_show.php?id=1097."
[75] H. J. Snaith, "How should you measure your excitonic solar cells?," Energy & Environmental Science, vol. 5, p. 6513, 2012.
[76] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, et al., "Anomalous Hysteresis in Perovskite Solar Cells," The Journal of Physical Chemistry Letters, vol. 5, pp. 1511-1515, 2014.
校內:2020-07-31公開