簡易檢索 / 詳目顯示

研究生: 李佳昱
Lee, Chia-Yu
論文名稱: 結合高精地圖與移動式測繪系統評估道路標線磨損程度
Lane Marking Condition Assessment through Integration of HD Map and MMS
指導教授: 王驥魁
Wang, Chi-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 移動式測繪系統道路標線高精地圖
外文關鍵詞: Mobile Mapping System, Lane marking, High Definition Map
相關次數: 點閱:101下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 道路標線係組成道路要件之一,具備解釋道路交通指引與規範之功能,道路標線於經年累月使用下,導致其外觀磨損而影響功能。現係由巡檢人員依照規章制度至現地勘查,以巡檢人員自主判斷道路標線磨損情形,紀錄對應道路標線之磨損程度。
    磨損程度除了由巡檢人員判斷與紀錄之外,亦有相關研究提出採用移動式測繪系統自動化計算磨損程度,因近年影像偵測標線方法準確度提升,故可透過影像偵測道路標線,並進一步計算其磨損程度。然而,此方法受到道路標線磨損條件影響,如若道路標線已完全磨損至無法透過人眼辨認位置,則透過影像亦難以偵測得出其位置與面積,使得計算磨損程度成果受限。
    為改善磨損條件影響致使影像偵測與磨損程度計算成果限制、本研究結合高精地圖與移動式測繪系統發展自動化計算磨損程度方法,透過高精地圖提供道路標線物空間坐標系之位置,投影計算道路標線於影像坐標系之範圍進行偵測,並利用投影正射影像計算標線面積與磨損程度,改善影像受標線嚴重磨損影響而難以偵測之限制,並數據化道路標線磨損程度資訊。
    本研究依道路標線種類與對應色彩區分道路標線為白色、黃色與紅色,採用各色彩具備之特徵偵測其位置與面積。經統計各場域之研究成果,計算得各類別道路標線磨損程度準確度kappa value為白色0.62、紅色0.59與黃色0.54,各色彩種類道路標線成果皆包含0%至100%等不同磨損程度案例。基於研究成果得知本研究之可行性,得以計算不同磨損程度之道路標線,以及改善嚴重磨損標線計算磨損程度之限制。

    The purpose of this study is to overcome the limitation of image detection in properly assessing the condition owing to fully deteriorated lane markings and accomplish lane markings condition digitization. This study proposes an algorithm for automatically assessing the conditions of lane markings that integrates HD Map(High Definition Map) with MMS(Mobile Mapping System). Generating a detecting ROI(Range of Interest) by projecting the HD Map 3D coordinate system location onto the image’s coordinate system. This study applies the color feature to recognize lane markings, which can be classified into three categories: white, yellow and red. Following the detection of lane markings in images, this study computes the area and condition of lane markings using orthorectified images. According to statistical results of study area, the kappa values for assessing the accuracy of conditions of lane markings in each category is 0.62 for white, 0.54 for yellow, and 0.59 for red. In conclusion, this study improves the limitation of assessment conditions of lane markings with image detection result. Achieving the purpose of automatically calculating and digitizing the conditions of lane markings through integration of HD Map and MMS.

    摘要 i 誌謝 v 目錄 vi 圖目錄 viii 表目錄 xi 第 1 章 前言 1 第 2 章 文獻回顧 4 2.1 道路標線影像偵測 4 2.2 道路標線損壞偵測與磨損程度評估 6 第 3 章 研究材料 8 3.1 道路標線面積參考資料 15 第 4 章 研究方法 17 4.1 前處理 19 4.1.1 NDT拼接點雲與改正軌跡 19 4.1.2 物空間坐標系至影像投影矩陣計算 23 4.2 偵測單元範圍計算 25 4.3 挑選最適道路影像資料 28 4.4 影像偵測道路標線範圍計算 30 4.5 道路標線偵測 32 4.5.1 白色道路標線偵測 32 4.5.2 紅色道路標線偵測 33 4.5.3 黃色道路標線偵測 35 4.6 道路標線磨損程度類別計算 39 4.6.1 正射影像投影 39 4.6.2 道路標線面積與磨損程度計算 40 第 5 章 成果與討論 41 5.1 參數設定與討論 41 5.1.1 DEM網格尺寸設定 41 5.1.2 ISODATA參數設定 42 5.2 成果分析 46 5.2.1 白色道路標線 47 5.2.2 紅色道路標線 52 5.2.3 黃色道路標線 56 第 6 章 結論 60 6.1 未來工作 61 參考文獻 66

    交通部(2019),交通部公路總局公路養護手冊,中華民國政府出版品。

    交通部;內政部(2022),道路交通標誌標線號誌設置規則,中華民國政府出版品。

    交通部道路交通安全督導委員會。取自:道安資訊查詢網:https://roadsafety.tw/Dashboard/Custom?type=%E7%B5%B1%E8%A8%88%E5%BF%AB%E8%A6%BD。

    Babić, D., & Brijs, T. (2021). Low-cost road marking measures for increasing safety in horizontal curves: A driving simulator study. Accident Analysis & Prevention, 153, 106013.

    Babić, D., Fiolić, M., Babić, D., & Gates, T. (2020). Road markings and their impact on driver behaviour and road safety: A systematic review of current findings. Journal of advanced transportation, 2020, 1-19.

    Ball, G. H., & Hall, D. J. (1965). ISODATA, a novel method of data analysis and pattern classification (Vol. 4). Stanford research institute Menlo Park, CA.

    Biber, P., & Straßer, W. (2003). The normal distributions transform: A new approach to laser scan matching. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453).

    Bosurgi, G., Marra, S., Pellegrino, O., Sollazzo, G., & Villari, M. (2022). Effects of road marking visibility on vehicles driving along curves: a preliminary study in a simulated environment. Transportation research record, 2676(12), 691-702.

    Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. " O'Reilly Media, Inc.".

    Chai, M., Li, G., Ma, W., Chen, D., Du, Q., Zhou, Y., Qi, S., Tang, L., & Jia, H. (2022). Damage characteristics of the Qinghai-Tibet Highway in permafrost regions based on UAV imagery. International Journal of Pavement Engineering, 1-12.

    Chai, Y., Wei, S. J., & Li, X. C. (2014). The multi-scale Hough transform lane detection method based on the algorithm of Otsu and Canny. Advanced Materials Research, 1042, 126-130.

    Chang, C.-Y., & Lin, C.-H. (2012). An efficient method for lane-mark extraction in complex conditions. 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing.

    Chang, L., Niu, X., & Liu, T. (2020). GNSS/IMU/ODO/LiDAR-SLAM integrated navigation system using IMU/ODO pre-integration. Sensors, 20(17), 4702.

    Che, E., Olsen, M. J., Parrish, C. E., & Jung, J. (2019). Pavement marking retroreflectivity estimation and evaluation using mobile LiDAR data. Photogrammetric Engineering & Remote Sensing, 85(8), 573-583.

    Cheng, M., Zhang, H., Wang, C., & Li, J. (2016). Extraction and classification of road markings using mobile laser scanning point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(3), 1182-1196.

    Chiu, K.-Y., & Lin, S.-F. (2005). Lane detection using color-based segmentation. IEEE Proceedings. Intelligent Vehicles Symposium, 2005.

    City of Edmonton’s Website (2012). Design and Construction Standards of Pavement Marking vol 8. Available online: https://www.edmonton.ca/public-files/assets/document?path=PDF/Design_and_Construction_Pavement_Markings.pdf (accessed on 31 Aug 2021).

    Foley, J. D., & Van Dam, A. (1982). Fundamentals of interactive computer graphics. Addison-Wesley Longman Publishing Co., Inc.

    Hoang, T. M., Hong, H. G., Vokhidov, H., & Park, K. R. (2016). Road lane detection by discriminating dashed and solid road lanes using a visible light camera sensor. Sensors, 16(8), 1313.

    Ibraheem, N. A., Hasan, M. M., Khan, R. Z., & Mishra, P. K. (2012). Understanding color models: a review. ARPN Journal of science and technology, 2(3), 265-275.

    Iparraguirre, O., Iturbe-Olleta, N., Brazalez, A., & Borro, D. (2022). Road Marking Damage Detection Based on Deep Learning for Infrastructure Evaluation in Emerging Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22378-22385.

    Javanmardi, E., Javanmardi, M., Gu, Y., & Kamijo, S. (2020). Pre-estimating self-localization error of NDT-based map-matching from map only. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7652-7666.

    Joblove, G. H., & Greenberg, D. (1978). Color spaces for computer graphics. Proceedings of the 5th annual conference on Computer graphics and interactive techniques.

    Jung, C. R., & Kelber, C. R. (2004). A robust linear-parabolic model for lane following. Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing.

    Jung, J., Che, E., Olsen, M. J., & Parrish, C. (2019). Efficient and robust lane marking extraction from mobile lidar point clouds. ISPRS journal of photogrammetry and remote sensing, 147, 1-18.

    Kong, W., Zhong, T., Mai, X., Zhang, S., Chen, M., & Lv, G. (2022). Automatic Detection and Assessment of Pavement Marking Defects with Street View Imagery at the City Scale. Remote Sensing, 14(16), 4037.

    Kuçak, R. A., Selbesoğlu, M. O., & Erol, S. (2020). Comparison of NDT and ICP Method’s point cloud registration performance. Intercontinental Geoinformation Days, 1, 130-133.

    Liu, R., Wang, J., & Zhang, B. (2020). High definition map for automated driving: Overview and analysis. The Journal of Navigation, 73(2), 324-341.

    Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T., & Omata, H. (2018). Road damage detection and classification using deep neural networks with smartphone images. Computer‐Aided Civil and Infrastructure Engineering, 33(12), 1127-1141.

    Miller, D. (1993). Benefit-cost analysis of lane marking. Public roads, 56(4), 153-163.

    Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.

    Parajuli, A., Celenk, M., & Riley, H. B. (2013). Robust lane detection in shadows and low illumination conditions using local gradient features. Open Journal of Applied Sciences, 3(01), 68.

    Patrascu, V. (2009). New Fuzzy Color Clustering Algorithm Based on hsl Similarity. IFSA/EUSFLAT Conf.

    Patrascu, V. (2013). New Framework of HSL System Based Color Clustering Algorithm. 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13).

    Pătraşcu, V. (2007). Fuzzy image segmentation based on triangular function and its n-dimensional extension. In Soft Computing in Image Processing: Recent Advances (pp. 187-207). Springer.

    Rusu, R. B., & Cousins, S. (2011). 3d is here: Point cloud library (pcl). 2011 IEEE international conference on robotics and automation.

    Sani, Z. M., Ghani, H., Besar, R., & Loi, W. (2016). Daytime road marker recognition using grayscale histogram and pixel values. Internetworking Indonesia Journal, 8(1), 11-16.

    Soquet, N., Aubert, D., & Hautiere, N. (2007). Road segmentation supervised by an extended v-disparity algorithm for autonomous navigation. 2007 IEEE Intelligent Vehicles Symposium.

    Sun, T.-Y., Tsai, S.-J., & Chan, V. (2006). HSI color model based lane-marking detection. 2006 ieee intelligent transportation systems conference.

    Theeuwes, J. (1998). Self-explaining roads: Subjective categorisation of road environments. Vision in vehicles, 6, 279-287.

    Tran, T.-T., Bae, C.-S., Kim, Y.-N., Cho, H.-M., & Cho, S.-B. (2010). An adaptive method for lane marking detection based on HSI color model. Advanced Intelligent Computing Theories and Applications: 6th International Conference on Intelligent Computing, ICIC 2010, Changsha, China, August 18-21, 2010. Proceedings 6.

    Xu, S., Wang, J., Wu, P., Shou, W., Wang, X., & Chen, M. (2021). Vision-based pavement marking detection and condition assessment—A case study. Applied Sciences, 11(7), 3152.

    Xuan, H., Liu, H., Yuan, J., & Li, Q. (2017). Robust lane-mark extraction for autonomous driving under complex real conditions. IEEE Access, 6, 5749-5765.

    Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T., Franke, U., Appenrodt, N., & Keller, C. G. (2014). Making bertha drive—an autonomous journey on a historic route. IEEE Intelligent transportation systems magazine, 6(2), 8-20.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE