簡易檢索 / 詳目顯示

研究生: 王姵力
Wang, Pei-li
論文名稱: 多時期微陣列資料的基因集分析
Mining Gene Sets from Time-Course Microarray Data
指導教授: 詹世煌
Chan, Shih-Huang
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 35
中文關鍵詞: 基因表現值多期型微陣列資料途徑基因組分析
外文關鍵詞: time-course microarray data, gene expression, pathway, gene set analysis
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大部份的生物現象或疾病表現通常是由許多基因一起發揮作用產生的結果。基因集分析是一個用來檢驗基因集中所有基因表現量和生物現象間關聯性的方法。Gene Set Enrichment Analysis (GSEA)是一種基因集分析方法,首先由Mootha et al.於2003年提出,之後Subramanian et al. (2005)、Tian et al. (2005)及Jiang and Gentleman (2007)陸續對GSEA法有所修正改良。GSEA法是利用基因資料庫所得之基因組,來評估基因組在不同反應上的顯著性。本文直接由多期型的microarray資料找出隨著環境變化而有類似行為的基因集,提出一個尋找有意義之基因集的分析程序,此有助於了解隨著環境變化基因彼此間的互動模式,此互動模式將以已知之基因路徑分析和wet-lab實驗來驗證。

    Most of the biological phenomena and diseases are resulted from the interactions of multiple genes. Gene set analysis is an approach to examine the differential expressions of a gene set associated with biological phenotypes. Gene Set Enrichment Analysis (GSEA), one kind of gene set analysis, first proposed by Mootha et al. in 2003, and then Subramanian et al. (2005), Tian et al. (2005), Jiang and Gentleman (2007) had the revisions to improve to GSEA in succession. Given a pre-defined set of genes, the goal of GSEA is to determine whether the specified gene set is associated with the phenotype of interest. This thesis intended to investigate the mining of meaningful gene sets from a time-course microarray data. An efficient process in choosing meaningful gene sets was built. The similar behavior genes as environmental change and the interactive network of different behavior genes are discovered by this process. A pathway analysis and a wet-lab experiment are conducted to verify the hypothetical interactive network.

    Chapter 1 Introduction............................................................................................ 1 Chapter 2 Finding Significant Gene Sets for Microarray Data ................................ 3 2.1. Literature Review on Gene Set Analysis ................................................ 3 2.2. Methods in Finding Highly Correlated Gene Sets ................................... 5 Chapter 3 Selection of Significant Gene Sets .......................................................... 7 3.1. Time-Course Microarray Data ................................................................ 7 3.2. Patterns of Gene Expression ................................................................... 9 3.3. Protein Kinase Gene Sets ......................................................................11 3.3.1. Mining Gene Sets ..................................................................................... 11 3.3.2. Dimension Reduction for Gene Sets ......................................................... 17 3.3.3. Associations of Gene Sets ........................................................................ 20 Chapter 4 Conclusions.......................................................................................... 31 References ............................................................................................................. 33 Appendix ............................................................................................................. 34

    Ballman, K.V. et al. (2004), "Faster cyclic loess: normalizing RNA arrays via linear models", Bioinformatics, 20, 2778-2786.
    Draghici. S. et al. (2003), "Global functional profiling of gene expression", Genomics, 81, 98-104.
    Efron, B. and Tibshirani, R. (2002), "Empirical Bayes methods and false discovery rates for microarrays", Genetic Epidemiology, 23, 70-86.
    Efron, B., Tibshirani, R., Storey, J. D. and Tusher, V. (2001), "Empirical Bayes analysis of a microarray experiment", Journal of the American Statistical Association, 96, 1151-1160.
    Jiang, Z. and Gentleman, R. (2007), "Extensions to gene set enrichment", Bioinformatics, 23, 306-13.
    Kerr, M. K. et al. (2002), "Statistical analysis of a gene expression microarray experiment with replication", Statistica Sinica, 12, 203-217.
    Mootha, V. K. et al. (2003), "PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes", Nature Genetics, 34, 267–273.
    Subramanian, A. et al. (2005) "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles", Proceedings National Academy of Science, 102, 15545–15550.
    Tian, L. et al. (2005) "Discovering statistically significant pathways in expression profiling studies", Proceedings National Academy of Science, 102, 13544–13549.
    Tusher, V. G., Chu, G. and Tibshirani, R. (2001), "Significance analysis of microarrays applied to the ionizing radiation response", Proceedings National Academy of Science, 98, 5116-5121.

    下載圖示 校內:2010-07-02公開
    校外:2010-07-02公開
    QR CODE