| 研究生: |
黃育賢 Huang, Yu-Xian |
|---|---|
| 論文名稱: |
燃料電池及氫氣重組器三維熱質傳分析及流道最佳化設計 3-D Heat & Mass Transfer and Optimization of Fuel Cell and Steam Reformer Channel Design |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 共同指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 186 |
| 中文關鍵詞: | 質子交換膜燃料電池 、流道設計 、數值模擬 、最佳化分析 |
| 外文關鍵詞: | PEMFC, channel design, numerical simulation, optimization analysis |
| 相關次數: | 點閱:85 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用理論模式探討重組器熱質傳現象以及燃料電池性能之最佳流道設計。為了提升燃料電池性能,分別探討指插型流道內的最佳擋塊位置、蛇行流道最佳寬度與高度配置以及梯度孔隙率對不同流道設計之電流密度分佈。而在氫氣產生部分,為了提升重組器的甲醇轉換率,在此針對重組器之平行流道長度、寬度、高度與進出口分歧管寬度,使用參數分析與最佳化方法觀察重組器之氣體濃度、溫度分佈對甲醇轉換率、氫氣與一氧化碳的生成所造成的影響。另外也使用簡易共軛梯度法(Simplified Conjugate-Gradient Method,SCGM),搜尋中間進/中間出之最佳流道寬度。其數值分析則是使用那維爾-史都克斯(Navier-Stokes equation)作為流場的統御方程式,配合能量及成份守恆方程式與電化學相關方程式,求解燃料電池之電化學反應與重組器之化學反應。此外亦使用簡易共軛梯度法進行重組器與燃料電池幾何最佳化搜尋。
於燃料電池部分,經由簡易共軛梯度最佳化搜尋指插型擋塊位置以及蛇行流道寬度與高度,能有效的提升電流密度分別為14%以及22.5%;另外,藉由參數分析得知除了指插型流道之外,梯度孔隙率能增加Z蛇流道以及平行流道的氣體擴散能力與觸媒層的電子傳遞能力,進而提升電流密度。相較於均勻孔隙率(ε1=0.5/ε2=0.5),當梯度孔隙率為ε1=0.7/ε2=0.3的條件下,Z蛇流道以及平行流道的電流密度最高可提升22.8%以及18.2%。另一方面,也能有效的增加氣體擴散能力,其平行流道以及Z蛇流道的氧氣使用率分別提升28%以及22%。
於重組器部分,為了觀察其幾何構型對氣體濃度分佈的影響,以參數分析的方式找出不同流道尺寸以及進出口位置對重組器性能的影響,其結果發現中間進/左右兩邊出的進出口設計,在入口條件為1 cc/min的流量下,不僅可以有效的增加甲醇轉換率31.3%也能降低31.7%的一氧化碳生成;最後,並以中間進/中間出為基本構型結合簡易共軛梯度之最佳化方法,搜尋最佳寬度分佈。模擬結果可明顯的看出,經由流道寬度的最佳化,不僅能有效的提升甲醇轉換率,還可降低一氧化碳的生成。而且藉由流道寬度的演化過程,明確的詮釋一氧化碳生成的主要原因為高濃度的氫氣與二氧化碳在局部高溫的條件下所產生的逆水氣反應。
The theortic models were performed to analyze the heat and mass transfer of reformer and optimal channel pattern design for proton exchange membrane fuel cell (PEMFC). In order to increase the performance of PEMFC, the location of baffles in channels with interdigitated channels pattern, channel widths and channel heights with serpentine channels pattern and porosity gradient in cathode gas diffusion layer were adjusted toward the maximization of the average current density of the flow field. In terms of reformer, this study was aim at parameter study for channel lengths, channel widths, channel heights, inlet manifold widths, outlet manifold widths and inlet/outlet positions to discuss the influence of methanol conversion ratio, hydrogen production rate and concentration of carbon monoxide. Moreover, the Simplified Conjugate-Gradient Method, SCGM, was used to search the optimal channel widths in case of central inlet/central outlet. The approach is developed by using the commercial CFD code as the direct problem solver, which is able to provide the numerical solutions for the three-dimensional mass, momentum and species transport equations as well as to predict the electric chemical reaction in a PEMFC and chemical reaction in reformer. In addition, the optimal algorithm SCGM was also integrated to search the geometric parameter.
Results show that the optimal design of the locations of the baffles with interdigitated channel pattern and channel heights and widths of serpentine channel pattern can be determined by using the SCGM in just a finite number of iterations. Compared with the initial design, the optimal design increases the fuel cell power output with interdigitated and serpentine channel patterns by 14% and 22.5%, respectively. Moreover, according to the parameter study the gas diffusion and ability for electron transfer of z-serpentine and parallel channel patterns can be enhanced by porosity gradient expect for interdigitated channel patterns. Compared with the uniform porosity design (ε1=0.5/ε2=0.5), the porosity gradient ε1=0.7/ε2=0.3 in z-serpentine and parallel channel patterns increases the current density by 22.8% and 18.2%, respectively. Furthermore, the gas usage was also increased 22% and 28% with z-serpentine and parallel channel patterns, respectively.
In terms of reformer, the parameter study of geometric parameter was performed to realize the performance of reformer. Results show that the design of central inlet/two outlets can not only increase the methanol conversion ratio to 31.3%, but also decrease the concentration of carbon monoxide to 31.7% at inlet condition of liquid flow rate 1 cc/min. At the final case, the SCGM algorithm was integrated with reformer model for central inlet/central outlet to search the optimal channel width distributions. According to the optimum channel width distributions, the methanol conversion ratio and concentration of carbon monoxide can be increased and decreased by optimal algorithm, respectively. Through the evolution of channel width, the reaction rate of reverse water gas shift reaction can be increased by high concentration of hydrogen and carbon dioxide in local high temperature.
[1] Holladay, J. D, Wainright, J. S., Jones, E. O., Gano, S. R., Power generation using a mesoscale fuel cell integrated with a microscale fuel processor, Journal of Power Sources 130, 111-118, 2004.
[2] Keyur, S, Shin, W. C., Besser, R. S., A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques, Sensors Actuators B 97, 157-167, 2004.
[3] Min, K. B., Tanaka S., Esashi, M., MEMS-based polymer electrolyte fuel cell, Electrochemistry 70, 924-927, 2002.
[4] Yong, S.T., Hidajat, K., Kawi, S. Reaction of autothermal steam reforming of methanol to hydrogen using a novel nano CuZnAl-catalyst Journal of Power Sources 131, 91-95, 2004.
[5] Lindstrom, B., Pettersson, L.J., Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications International Journal of Hydrogen Energy 26, 923-933, 2001.
[6] Delsman, E.R., Uju, C.U., de Croon M H J M, Schouten, J.C., Ptasinski, K.J., Energy analysis of an integrated fuel processor and fuel cell (FP-FC) system, Exergy 31, 330-3309, 2006.
[7] Pepply, B.A., Amphlett, J.C., Kearns, L.M., Mann, R.F., Methanol steam steaming on Cu/ZnO/Al2O3. Part 1 : the reaction network, Applied Catalysis A: General 179, 21-29, 1999.
[8] Asprey, S.P., Wojciechowski, B.W., Pepply, B.A., Kinetic studies using temperature scanning : the steam steaming of methanol, Applied Catalysis A: General 179, 51-70 , 1999.
[9] Lim, M.S., K., Myoung R., Noh, J., Woo, S.I., A plate-type reactor coated with zirconia-sol and catalyst mixture for methanol steam-reforming, Journal of power sources 140, 66-71, 2005.
[10] Purnama, H., Ressler, T., Jentoft, R.E., Soerijanto, H., Schlögl, R., Schomäcker, R., CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst, Applied Catalysis A: General 259, 83-94, 2004.
[11] Pattekar, A.V., Kothare, M.V., A microreactor for hydrogen production in micro fuel cell applications, Journal of Microelectromechanical Systems 13, 7-18, 2004.
[12] Hwang, S.M., Kwon, O.J,, Ahn, S.H., Kim, J.J., Silicon-based micro-reactor for preferential CO oxidation, Chemical Engineering Journal 146, 105-111, 2009.
[13] Kotobuki, M., Watanabe, A., Uchida, H., Yamashita, H., Watanabe, M., Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe and Pt-Fe/mordenite catalysts, Journal of Catalysis 236, 262-269, 2005.
[14] Manasilp, A., Gulari, E., Selective CO oxidation over Pt/alumina catalysts for fuel cell applications, Applied Catalysis B: Environmental 37, 17-25, 2002.
[15] Zhou, S., Yuan, Z., Wang, S., Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications, International Journal of Hydrogen Energy 31, 924-933, 2006.
[16] Kim, J.Y., Kwon, O.J., Hwang, S.M., Kang, M.S., Kim, J.J., Development of a miniaturized polymer electrolyte membrane fuel cell with silicon separators, Journal of Power Sources 161, 432-436, 2006.
[17] Richarz, F., Wohlmann, B., Vogel, U., Hoffschulz, H., Wandelt, K., Surface and electrochemical characterization of electrodeposited PtRu alloys, Surface Science 335, 361-371, 1995.
[18] Frelink, T., Visscher, W., Veen, J.A.R.van, On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt, Surface Science 335, 353-360, 1994.
[19] 黃鎮江, “燃料電池”,全華科技圖書股份有限司,2005。
[20] Barbir, F., PEM Fuel Cells:Theory and Pratice, ELSEVIER, 2005.
[21] Larminie J., Dicks A., Fuel Cell Systems Explained, Second Edition, John Wiley, 2003.
[22] Jensen, K.F., Microreaction engineering - is small better?, Chemical Engineering Science 56, 293-303, 2001.
[23] Tanaka, S., Chang, K.S., Min, K.B., Satoh, D., Yoshida, K., Esashi, M., MEMS-based components of a miniature fuel cell/fuel reformer system, Chemical Engineering Journal 101, 143-149, 2004.
[24] Tsutomu, T., Masatoshi, N., Keishi, T., Osamu, N., Tadao, Y., Development of multi-layered microreactor with methanol reformer for small PEMFC, Journal of Power Sources 145, 691-696, 2005.
[25] Kawamura, Y., Ogura, N., Yamamoto, T., Igarashi, A., A miniaturized methanol reformer with Si-based microreactor for a small PEMFC, Chemical Engineering Science 61, 1092-1101, 2006.
[26] Holladay, J.D., Jones, E.O., Dagle, R.A., Xia, G.G., Cao, C., Wang, Y., High efficiency and low carbon monoxide micro-scale methanol processors, Journal of Power Sources 131, 69-72, 2004.
[27] Jung, Y.W., Hee, K.J,, Min, K.J., Seong, I.W., Performance of microchannel reactor combined with combustor for methanol steam reforming, Catalysis Today 111, 158-163, 2006.
[28] Chen, G., Yuan, Q., Li, H., Li, S., CO selective oxidation in a microchannel reactor for PEM fuel cell, Chemical Engineering Journal 101, 101-106, 2004.
[29] Yu, X., Tu, S.T., Wang, Z., Qi, Y., Development of a microchannel reactor concerning steam reforming of methanol, Chemical Engineering Journal 116, 123-132, 2006.
[30] Kim, T., Kwon, S., Design, fabrication and testing of a catalytic microreactor for hydrogen production, Journal of Micromechanics and Microengineering 16, 1760-1768, 2006.
[31] Seo, D. J., Yoon, W. L., Yoon, Y. G., Park, S. H., Park, G. G., Kim, C. S., Development of a micro fuel processor for PEMFCs, Electrochimica Acta 50 ,719-723, 2004.
[32] Park, G.G,, Seo, D.J., Park S.H., Yoon, Y.G., Kim, C.S., Yoon, W.L., Development of microchannel methanol steam reformer, Chemical Engineering Journal 101, 87-92, 2004.
[33] Park, G.G., Yim, S.D., Yoon, Y.G., Lee, W.Y., Kim C.S., Seo, D.J., Eguchi, K., Hydrogen production with integrated micro-channel fuel processor for portable fuel cell systems, Journal of Power Sources 145, 702-706, 2005.
[34] Choi, Y., Stenger, H.G., Kinetics simulation and insights for CO selective oxidation in fuel cell applications, Journal of Power Sources 129, 246-254, 2004.
[35] Pan, M., Tang, Y., Pan, L., Lu, L., Optimal design of complex manifold geometries for uniform flow distribution between microchannels, Chemical Engineering Journal 137, 339-346, 2008.
[36] Tonomura, O., Tanaka, S., Noda, M., Kano, M., Hasebe, S., Hashimoto, I., CFD-based optimal design of manifold in plate-fin microdevices, Chemical Engineering Journal 101, 397-402, 2004.
[37] Balaji, S., Lakshminarayanan, S., Improved Design of Microchannel Plate Geometry for Uniform Flow Distribution, The Canadian Journal of Chemical Engineering 84, 715-721, 2006.
[38] Qi, Z., Kaufman, A., Activation of low temperature PEM fuel cells, Journal of Power Sources 111, 181-184, 2002.
[39] Springer, T.E., Wilson, M.S., Gottesfeld, S., Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells, Journal of the Electrochemical Society 140, 3513-3526, 1993.
[40] Wang, L., Husar, A., Zhou, T., Liu, H., A parametric study of PEM fuel cell performances, International Journal of Hydrogen Energy 28, 1263-1272, 2003.
[41] Barbir, F., Gorgun, H., Wang, X., Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells, Journal of Power Sources 141, 96-101, 2005.
[42] Nguyen, T.V., White, R.E., A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells, Journal of the Electrochemical Society 140, 2178-2186, 1993.
[43] Modica, E., Antonucci, V., Influence of flow field design on the performance of adirect methanol fuel cell, Journal of Power Sources 91, 202-209, 2000.
[44] Bernardi, D.M., Verbrugge, M.W., Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte, AIChE Journal 37, 1151-1163, 1991.
[45] Gurau, V., Two-dimensional Model for Proton Exchange Membrane Fuel Cells, AIChE Journal 44, 2410-2422, 1998.
[46] Dagan, G., The generalization of Darcy’s law for non-uniform flows, Water Resources Research 15, 1-7, 1979.
[47] Shan. Y., Choe. S.Y., Choi. S.H., Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects, Journal of Power Sources 165, 196-209, 2007.
[48] Soong, C.Y., Yan, W.M., Tseng, C.Y., Liu, H.C., Chen, F, Chu, H.S., Analysis of reactant gas transport in a PEM fuel cell with partially blocked fuel flow channels, Journal of Power Sources 43, 36-47, 2005.
[49] Berning, T., Djilali, N., Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study, Journal of Power Sources 124, 440-452, 2003.
[50] Dutta, S. Shimpalee, S., Van Zee, J. W., Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell, International Journal of Heat and Mass Transfer 44, 2029-2042, 2001
[51] Yan, W.M., Soong, C.Y., Chen, F., Chu, H.S., Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells, Journal of Power Sources 125, 27-39, 2004.
[52] Yu, X., Zhou, B., Sobiesiak, A., Water and thermal managementfor Ballard PEM fuel cell stack, Journal of Power Sources 147, 184-195, 2005.
[53] Shimpalee, S., Greenway, S., Van Zee, J.W., The impact of channel path length on PEMFC flow-field design, Journal of Power Sources 160, 398-406, 2006.
[54] Qi, Z., Kaufman, A., PEM fuel cell stacks operated underdry-reactant conditions, Journal of Power Sources 109, 469-476, 2002.
[55] Yan, W.M., Liu, H.C., Soong, C.Y., Chen, F., Cheng, C.H., Numerical study on cell performance and local transport phenomena of PEM fuel cells with novel flow field designs, Journal of Power Sources 161, 907-919, 2006.
[56] Grujicic, M., Chittajallu, K.M., Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells, Chem. Eng. Sci. 59 5883-5895, 2004.
[57] Secanell, M., Carnes, B., Suleman, A., Djilali, N., Numerical optimization of proton exchange membrane fuel cell cathodes, Electrochim. Acta 52, 2668-2682, 2007.
[58] Cheng, C.H., Chang, M.H., Predictions of internal temperature distribution of PEMFC by non-destructive inverse method, Journal of Power Sources 139, 115-125, 2005.
[59] Cheng, C.H., Chang, M.H., Non-destructive inverse method for determination of irregular internal temperature distribution in PEMFCs, Journal of Power Sources 142, 200-210, 2005.
[60] Cheng, C.H., Lin, H.H., Lai, G.J., Numerical optimization of proton exchange membrane fuel cell cathodes, Journal of Power Sources 165, 803-813, 2007.
[61] Mohamed, I., Jenkins, N., Proton exchange membrane(PEM) fuel cell stack configuration using genetic algorithms, Journal of Power Sources, 131, 142-146, 2004.
[62] Lin, H.H., Cheng, C.H., Soong, C.Y., Chen, F., Yan, W.M., Optimization of key parameters in the proton exchange membrane fuel cell, Journal of Power Sources 162, 246-254, 2006.
[63] Gudla, P. K., Ganguli, R., An automated hybrid genetic-conjugate gradient algorithm for multimodal optimization problems, Applied Mathematics and Computation 167, 1457-1474, 2005.
[64] Kwon, O.J., Hwang, S.M., Chae, J.H., Kang, M.S., Kim, J.J., Performance of a miniaturized silicon reformer-PrOx-fuel cell system, Journal of Power Sources 165, 342-346, 2007.
[65] Kim, T., Kwon, S., MEMS fuel cell system integrated with a methanol reformer for a portable power source, Sensors and Actuators A 154 204-211, 2009.
[66] Wang, C.Y., Cheng, P., Multiphase flow and heat transfer in porous media, Advances in Heat Transfer 30, 93-196, 1997.
[67] Bird, R.B., Stewart, W.E., Lightfoot E.N., Transport phenomena, Wiley, New York, 1960.
[68] Springer, T.E., Zawodinski, T.A., Gottesfeld, S., Polymer. Electrolyte Fuel Cell Model, Journal of The Electrochemical Society 138, 2334-2342, 1991.
[69] Mazumder, S., Cole, J.V., Rigorous 3-D mathematical modeling of PEM fuel cells I. Model Predictions without Liquid Water Transport, Journal of The Electrochemical Society 150, A1503-A1509, 2003.
[70] CFD-ACE(U), CFD Research Corporation, Alabama, USA (2003).
[71] 劉惟信, “機械最佳化設計”, 全華科技圖書股份有限司, 1986。
[72] Um, S., Wang, C.Y., Three-dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells, Journal of Power Sources 125, 40-51, 2004.
[73] Van Doormaal, J.P. and Raithby, F.D., “Enhancements of the SIMPLE Method predicting Incompressible fliud flows”, Numerical heat Transfer Vol.7, pp.147-163, 1984.
[74] Patankar, S.V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corpotation, 1984.
[75] Wang, Z.H., Wang, C.Y., Chen, K.S., Two phase flow and transport in the air cathode of proton exchange membrane fuel cells, Journal of Power Sources 94, 40-50, 2001.
[76] Yan, W. M., Mei, S. C., Soong, C. Y., Liu, Z. S., Song, D., Experimental study on the performance of PEM fuel cells with interdigitated flow channels, Journal of Power Sources 160, 116-122, 2006.
[77] Wang X. D., Zhang X. X., Yan W. M., Lee D. J., Su A. An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell, International Journal of Hydrogen Energy 34, 3823-3832, 2009.
[78] Tang, H., Wang, S., Pan M., Yuan, R., Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells, Journal of Power Sources 166, 41-46, 2007.
[79] Nield, D. A. and Bejan A., Convection in porous media, 2nd ed., Springer, New York, p.9, 1999.
[80] Pan, L., Wang, S., Modeling of a compact plate-fin reformer for methanol steam reforming in fuel cell systems, Chemical Engineering Journal 108, 51-58, 2005.