| 研究生: |
許敏宏 Hsu, Min-Hong |
|---|---|
| 論文名稱: |
質子交換膜燃料電池三維流場之數值分析 Numerical Analyses on the Three-dimensional Flow of Proton Exchange Membrane Fuel Cells |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 燃料電池 、數值模擬 、三維流場 |
| 外文關鍵詞: | simulation, fuel cell, three-dimensional flow |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燃料電池具有低污染、高效率及可靠之特性,目前已被視為明日能源之星。因此,本研究針對質子交換膜燃料電池三維、動態及非等溫之流場特性,建立一計算模擬程式。並以此模擬程式分析模擬質子交換膜燃料電池陽極流場、陽極擴散層、高分子薄膜電極組合、陰極擴散層及陰極流場等五區域之流場。由模擬結果發現,擴散層之多孔性材質能有效地控制質子交換膜燃料電池之溫度。不僅能降低其溫度,也使得溫度分佈較為均勻。在等溫壁面條件下,陰極產生之熱大部分藉由壁面熱傳導散出,流場溫度增幅不大,進氣當量比之影響也相對地較不顯著。燃料電池不可逆功放熱量隨之增加,流場溫度亦隨之增高。模擬結果亦發現,當陰極生成物量多向外擴散時,會造成陰極擴散層流場背向質子交換膜流動。因此,出現陰陽兩極流場平均速度同向之現象。同時,流場溫度會隨著擴散層孔隙率增加而提高。此研究結果將可提供質子交換膜燃料電池熱管理設計之參考。
Fuel cells are recognized as the star of future’s energy by virtue of their clean, efficient, and reliable service. In the present study, a comprehensive numerical simulation model has been successfully developed for the three-dimensional, dynamic and non-isothermal flow of proton exchange membrane fuel cells. The model is able to solve the five rgions, including the anode flow channel, the anode diffusion layer, MEA(Membrane Electrode Assembly), the cathode diffusion layer, and the cathode flow channel, simultaneously. The results obtained from the numerical simulation indicate that the temperature in a PEMFC exhibits a lower value and a more uniform distribution with gas diffusion layers. When the channel wall is at a specified temperature, the heat generated from the cathode side is greatly dissipated from the channel wall by conduction. The flow temperature increases only mildly, and the effect of the stoichiometric flow ratio of fuel and air is thus relatively insignificant. Generation of the irreversible work in a fuel cell is mainly due to the change of the chemical entropy and the internal losses. As the current density is increased, the irreversible work increases, resulting in a higher temperature. It is also interesting to find that the diffusion of the massive reation products from the cathode electrode toward the cathode flow channel makes the flow direction in the cathode diffusion layer against the MEA. In other words, the flows in the anode and cathode diffusion layers exhibit the same flow direction. Moreover, the flow temperature increases with increasing permeability of the diffusion layer. The present results are useful for an optimum design of fuel cells working with proper thermal managements.
【1】D. M. Bernard, and M. W. Verbrugge, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., Vol.139, 2477, (1992)
【2】 T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model”, J. Electrochem. Soc., Vol.138, 2334, (1991)
【3】D. Bevers, and M. Wohr, “Simulation of a polymer electrolyte fuel cell electrode”, J. Appl Electrochem., Vol.27, 1254-1264, (1997)
【4】M. Wohr, K. Bolwin, W. Schnurnberger, M. Fischer, W. Neubrand and G. Eigenberger, “Dynamic Modelling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation”, Int. J. Hydrogen Energy., Vol.23, 213-218, (1998)
【5】M. Eikerling, Y. I. Kharkats, A. A. Kornyshev, and Y. M. Voifkovich, “Phenomenological Theory of Electro-osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Membranes ”, J. Electrochem. Soc., Vol.145, 2684, (1998)
【6】N. Djilali, and D. Lu, “Influence of Heat Transfer on Gas and Water Transport in Fuel Cells”, J. Therm. Sci., Vol.41, 29-40, (2002)
【7】 G. Maggio, V. Recupero, and L. Pino, “Modeling polymer electrolyte fuel cells: an innovative approach ”, J. Power Sources., Vol.101 , 275-286, (2001)
【8】T. V. Nguyen, and R. E. White, “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells”, J. Electrochem. Soc., Vol.140, 2178, (1993)
【9】T. F. Fuller, and J. Newman, “Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., Vol.140, 1218, (1993)
【10】J. S. Yi, and T. V. Nguyen, “An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells ”, J. Electrochem. Soc., Vol.145, 1149, (1998)
【11】V. Gurau, H. Liu, and S. Kakac, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells”, AIChE Journal, Vol.44, 2410, (1998)
【12】J. S. Yi, and T. V. Nguyen, “Multicomponent Transport in Porous Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors”, Journal of Electrochemical Society., Vol.146, 38-45, (1999)
【13】K. Broka, and P. Ekdunge, “Modelling the PEM fuel cell cathode”, J. Appl. Electrochem., Vol.27, 281-289, (1997)
【14】F. Gloaguen, and R. Durand, “Simuations of PEFC cathodes: an effectiveness factor approach”, J. Appl. Electrochem., Vol.27, 1029-1035, (1997)
【15】K. Dannenberg, P. Ekdunge and G. Lindbergh, “Mathematical model of the PEMFC”, J. Appl. Electrochem., Vol.30, 1377-1387, (2000)
【16】S. Dutta, S. Shimpalee and J. W. Van Zee, “Three-dimensional numerical simulation of straight channel PEM fuel cells”, J. Appl. Electrochem. Vol.30, 135-146, (2000)
【17】S. Shimoalee, and S. Dutta, “Numerical Prediction of Temperature Distribution in PEM fuel cells”, Numerical Heat Transfer, Part A, Vol.38, 111-128, (2000)
【18】T. Zhou, and H. Liu, “A 3-D model for PEM fuel cells operated on reformate” , J. Power Sources., Vol.138 , 101-110, (2003)
【19】G. Hu, J. Fan, S. Chen, Y. Liu, and K. Cen, “Three-dimensional numerical analysis of proton exchange membrance fuel cells(PEMFCs) with convectional and interdigitated flow fields”, J. Power Sources., Vol.136 , 1-9, (2004)
【20】S. Um, and C. Y. Wang, “Three-dimensional analysis of transport and electrolytechemical reactions in polymer electrolyte fuel cells”, J. Power Sources., Vol.125 , 40-51, (2004)
【21】L. R. Jordan, A. K. Shukla, T. Behrsing, N. R. Avery, B. C. Muddle, and M. Forsyth, “Diffusion layer parameters influencing optimal fuel cell performance”, J. Power Sources., Vol.86 , 250-254, (2000)
【22】徐昌志, 質子交換薄膜燃料電池氣體流道內質量傳遞之研究, 碩士論文,中原大學機械研究所,(2002)
【23】 陳馨德, 燃料電池氫氧燃料在流到中傳輸現象之研究, 碩士論文,中原大學機械研究所,(2001)
【24】 傅清揚, 燃料電池陰極流道表面結構效應之研究, 碩士論文,中原大學機械研究所,(2001)
【25】 黃鎮江,羅琨航,王士豪,蔡克群, 質子交換膜燃料電池動力學輸送現象之研究, 中華民國第二十五屆全國力學會議,(2001)
【26】T. Berning, “Three-dimensional computational analysis of transport and phenomena in a PEM fuel cells” , A Dissertation Submitted in Partial Fulfillment of the Degree of Doctor OF PHILOSOPHY, University of Victoria, (1997)
【27】A. A. Amsden, “KIVA-3: A KIVA Program with Block-Structure Mesh for Complex Geometries ”, Los Alamos National Laboratory Report La-12503-MS , March (1993)
【28】A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays ”, Los Alamos National Laboratory Report LA-11560-MS, (1989).
【29】C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys., Vol.14, 227, (1974)
【30】W. E. Pracht, J. Comput. Phys., Vol.17, 132, (1975)
【31】S. V. Patankar, “ Numerical Heat Transfer and Fluid Flow ”, Hemisphere, Washington, D. C., (1980)
【32】T. Berning, D. M. Lu, and N. Djilali, “ Three-dimensional computational analysis of transport and phenomena in a PEM fuel cells” , J. Power Sources.106 ,284-294, (2002)
【33】涂正輝, 質子交換膜燃料電池之三維流道設計與熱質傳分析, 碩士論文,
國立成功大學機械工程學系,(2003)
【34】G. Dagan, “Flow and Transport in Porous Formations”, Springer-Verlag ,
New York , (1989)