簡易檢索 / 詳目顯示

研究生: 陳文明
Chen, Wen-Ming
論文名稱: 熔融無鉛銲錫噴印於薄膜太陽能電池模組封裝接合之研究
Study of Molten Lead-free Solder Deposited by Inkjet Printing for Bonding of Thin-film Solar Cell Modules
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: 薄膜太陽能電池無鉛銲錫噴墨製程
外文關鍵詞: thin-film solar cell, lead-free solder, inkjet printing process
相關次數: 點閱:99下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來太陽能產業發展迅速,太陽能電池製造技術不斷在進步,其中,又以薄膜太陽能電池最受矚目。研究上主要以改善太陽能電池結構,以提高轉換效率,卻很少人針對後段製程方法進行改良與研究。
    薄膜太陽能電池在電池製成後進入模組化階段,太陽能模組必須經過電極導帶接合及模組封裝兩大步驟。為了維持模組封裝後太陽能電池穩定的轉換效率,銅帶與薄膜太陽能電池鋁背電極接合需有理想的接合強度。噴墨技術為一種非接觸式的直接製造方法,可精確控制液滴大小與位置、減少接合材料的消耗,因此研究採用無鉛銲錫作為接合材料並透過噴墨製程的結合,並同時搭配模組封裝技術,得到較佳的模組封裝品質。
    本研究成功應用噴墨技術噴印Sn3.0Ag0.5Cu合金材料於薄膜太陽能電池模組接合上,研究結果得到較佳的剝離強度其液滴間距至少要小於200 μm,即單位面積下銲錫量須超過50 μg/mm2,所得到的剝離強度即可超越導電銀膠接合的剝離強度。隨著接合強度的增加,太陽能電池效率損失也會跟著下降。本研究所獲得的最佳效率損失為1.5 %,薄膜太陽能電池轉換效率能維持在8.3 %以上。

    The photovoltaic industry is fast growing and the fabrication of solar cells has been kept improving. Nowadays, the main type of solar cell development is thin-film solar cells. However, most of studies focus on the solar cell structure to enhance the photovoltaic conversion efficiency rather than improving the solar module packaging process.
    For module packaging process, the bus wire bonding and the encapsulation of solar cells are needed in the fabrication of thin-film solar cell. In order to keep stable photovoltaic conversion efficiency after module packaging, good bonding strength is required between copper ribbon and aluminum back electrode of thin-film solar cell. Inkjet printing technology is a non-contact direct fabrication process, which can control precise droplet size and position and reduce material consumption. This study used lead-free solder as bonding material by inkjet printing process and module packaging technology for getting better quality of solar cell modules.
    In this study, Sn3.0Ag0.5Cu solders were successfully printed by using inkjet printing technology for bonding of thin-film solar cell modules. The results show that the peel strength of lead-free solder is better than that of silver paste when the dot spacing of lead-free droplets is lower than 200 μm. In other words, the amount of lead-free solder is over than 50 μg/mm2. As the bonding strength increases, the efficiency loss decreases. The optimum results of low efficiency loss degrade 1.5 % and good photovoltaic conversion efficiency is over 8.3 %.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 第二章 文獻回顧 3 2.1 太陽能電池 3 2.1.1 太陽能電池工作原理 3 2.1.2 太陽能電池電性參數 3 2.1.3 非晶矽薄膜太陽能電池 6 2.1.4 太陽能電池模組 7 2.2 無鉛銲錫 9 2.3 噴墨製程技術 10 2.3.1 壓電噴墨技術 10 2.3.2 壓電噴墨原理 11 2.3.3 微液滴行為 12 第三章 實驗方法 23 3.1 壓電噴墨設備 23 3.2 實驗步驟 23 3.2.2 銲錫助焊劑 24 3.2.3 噴印及接合步驟 24 3.2.4 太陽能電池模組封裝 26 3.2.5 量測分析方法 27 第四章 結果與討論 36 4.1 熔融銲錫噴印於電池鋁背電極 36 4.2 接合界面之剝離強度分析 38 4.3 接合界面之顯微結構 39 4.4 太陽能電池電性量測分析 40 4.5 太陽能電池模組封裝條件 41 4.5.1 成型溫度及層壓時間之影響 41 4.5.2 模組封裝後轉換效率變化分析 44 第五章 結論 66 參考文獻 67

    1. L. L. Kazmerski, “Best research-cell efficiencies”, National Renewable Energy Laboratory (NREL), Golden, Colorado, 12 February 2013, http://www.nrel.gov/ncpv/
    2. 張雅雯,太陽能電池之材料及製程知識庫系統,國立成功大學,材料科學及工程學系碩士論文,2009。
    3. A. G. Aberle, “Thin-film soalr cells”, Thin Solid Films , Vol. 517, pp. 4706-4710, 2009.
    4. C. Beneking, B. Rech, S. Wieder, O. Kluth, H. Wagner, W. Frammelsberger, R. Geyer, P. Lechner, H. Rubel and H. Schade, “Recent developments of silicon thin film solar cells on glass substrates”, Thin Solid Films, Vol. 351, pp. 241-246, 1999.
    5. K. L. Chopra, P. D. Paulson and V. Dutta, “Thin-film solar cells: an overview”, Progress in Photovoltaic, Vol. 12, pp. 69-92, 2004.
    6. A. E. Amrani, A. Mahrane, F. Y. Moussa and Y. Boukennous, “Solar module fabrication”, International Journal of Photoenergy, Vol. 2007, pp. 1-5, 2007.
    7. P. C. de Jong, D. W. K. Eikeloom, J. A. Wienke, M. W. Brieko and M. J. H. Kloos, “Low-stress interconnections for solar cells”, 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005.
    8. J. Wienke, O. Tober, P. Buur and W. Brieko, “Ultrasonic welding a connection technology for flexible thin film modules”, 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004.
    9. I. J. Bennett, P. C. de Jong, M. J. H. Kloos and C. N. J. Stam, “Low-stress interconnection of solar cells”, 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007.
    10. D. W. K. Eikelboom, J. H. Bultman, A. Schonecker, M. H. H. Meuwissen, M. A. J. C. van den Nieuwenhof and D. L. Meier, “Conductive adhesives for low-stress interconnection of thin back-contact solar cells”, 29th Photovoltaic Specialists Conference, pp. 403-406, 2002.
    11. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Materials Science & Engineering R-Reports, Vol. 27, pp. 95-141, 2000.
    12. 周雅靜、陳興華、王正全,太陽電池串接材料PV ribbon製造方法簡介,工業材料雜誌,第285期, pp. 70-74,2010。
    13. B. A. Cook, I. E. Anderson, J. L. Harringa and R. L. Terpstra, “Effect of heat treatment on the electrical resistivity of near-eutectic Sn-Ag-Cu Pb-free solder alloys”, Journal of Electronic Materials, Vol. 31, pp. 1190-1194, 2002.
    14. X. R. Zhang, Z. F. Yuan, H. X. Zhao, L. K. Zang and J. Q. Li, “Wetting behavior and interfacial characteristic of Sn-Ag-Cu solder alloy on Cu substrate”, Chinese Science Bulletin, Vol. 55, pp. 797-801, 2010.
    15. 嚴千智,無鉛銲錫知識庫之建立與Sn-8.5Zn-0.5Ag-0.1Al-0.5Ga合金抽線性及機械性質之研究,國立成功大學,材料科學及工程學系碩士論文,2004。
    16. H. H. Hsieh, F. M. Lin, F. Y. Yeh and M. H. Lin, “The effects of temperature and solders on the wettability between ribbon and solar cell”, Solar Energy Materials & Solar Cells, Vol. 93, pp. 864-868, 2009.
    17. H. H. Hsieh, F. M. Lin and S. P. Yu, “Performance of low series-resistance interconnections on the polycrystalline solar cells”, Solar Energy Materials & Solar Cells, Vol. 95, pp. 39-44, 2011.
    18. K. K. B. Hon, L. Li and I. M. Hutchings, “Direct writing technology-advances and developments”, CIRP Annals - Manufacturing Technology, Vol. 57, pp. 601-620, 2008.
    19. J. T. Wu, S. L. C. Hsu, M. H. Tsai and W. S. Hwang, “Conductive silver patterns via ethylene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate”, Thin Solid Films, Vol. 517, pp. 5913-5917, 2009.
    20. Z. Liu, Y. Su and K. Varahramyan, “Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers”, Thin Solid Films, Vol. 478, pp. 275-279, 2005.
    21. M. H. Tsai, W. S. Hwang, H. H. Chou and P. H. Hsieh, “Effects of pulse voltage on inkjet printing of silver nanopowder suspension”, Nanotechnology, Vol. 19, p. 335304, 2008.
    22. Y. F. Liu, W. S. Hwang, Y. F. Pai and M. H. Tsai “Low temperature fabricated conductive lines on flexible substrate by inkjet printing”, Microelectronics Reliability, Vol. 52, pp. 391-397, 2012.
    23. H. J. Chang, M. H. Tsai, W. S. Hwang, J. T. Wu, S. L. C. Hsu and H. H. Chou, “Application of silver nitrate solution and inkjet printing in the fabrication of microstructural patterns on glass substrates”, The Journal of Physical Chemistry C, Vol. 116, pp. 4612-4620, 2012.
    24. K. Yamaguchi, K. Sakai, T. Yamanaka and T. Hirayama, “Generation of three-dimensional micro structure using metal jet”, Precision Engineering, Vol. 24, pp. 2-8, 2000.
    25. T. M. Lee, T. G. Kang, J. S. Yang, J. D. Jo, K. Y. Kim, B. O. Choi and D. S. Kim, “Drop-on-demand solder droplet jetting system for fabricating microstructure”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 31, pp. 202-210, 2008.
    26. D. J. Hayes, W. R. Cox and D. B. Wallace, “Printing system for MEMS packaging”, Proceedings of SPIE Conference on Micromachining and Microfabrication, Vol. 4558, pp. 206-214, 2001.
    27. Q. Lin and M. Orme, “High precision solder droplet printing technology and the state-of-the-art”, Journal of Materials Processing Technology, Vol. 115, pp. 271-283, 2001.
    28. D. B. Bogy and F. E. Talke, “Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices”, IBM Journal of Research and Development, Vol. 28, pp. 314-321, 1984.
    29. E. Tekin, P. J. Smith and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles”, Soft Matter, Vol. 4, pp. 703-713, 2008.
    30. 白硯方,壓電噴墨技術中單脈衝波形之脈衝時間對液滴行為影響之研究,國立成功大學,材料科學及工程學系碩士論文,2012。
    31. 林筱嵐,噴墨印刷製程技術熔融無鉛銲錫微液滴噴覆於基板行為之數值模擬研究及實驗驗證,國立成功大學,材料科學及工程學系碩士論文,2011。
    32. 劉玉峰,脈衝波形對壓電式噴墨技術微液滴行為與噴印品質之研究,國立成功大學,材料科學及工程學系博士論文,2013。
    33. M. H. Tsai, W. S. Hwang and H. H. Chou, “The micro-droplet behavior of a molten lead-free solder in an inkjet printing process”, Journal of Micromechanics and Microengineering, Vol. 19, p. 125021, 2009.
    34. 蔡銘修,壓電噴墨技術之微液滴行為及噴印品質研究,國立成功大學,材料科學及工程學系博士論文,2010。
    35. L. Yi, J. Xian and J. Zhou, “Comparison of wetting properties for Sn-based solders on copper and aluminum substrates”, Electronic Components and Materials, Vol. 30, pp. 75-78, 2011.
    36. T. Takemoto, M. Mizutani, I. Okamoto and A. Matsunawa , “Effect of flux composition on wettability in soldering of aluminum”, Transactions of JWRI, Vol. 23, pp. 197-203, 1994.
    37. B. R. Strohmeier, “Surface characterization of aluminum foil annealed in the presence of ammonium fluoborate”, Applied Surface Science, Vol. 40, pp. 249-263, 1989.
    38. E. R. Lee, “Microdrop Generation”, CRC Press LLC, pp. 59-67, 2003.
    39. M. H. Tsai and W. S. Hwang, “Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse”, Materials Transactions, Vol. 49, pp. 331-338, 2008.
    40. J. Wendt, M. Trager, R. Klengel, M. Petzold, D. Schade and R. Sykes, “Improved quality test method for solder ribbon interconnects on silicon solar cells”, in Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on, pp. 1-4, 2010.
    41. 戴寶通、鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會,pp. 97-132,2008。
    42. O. Haillant, “Accelerated weathering testing principles to estimate the service life of organic PV modules”, Solar Energy Materials & Solar Cells, Vol. 95, pp. 1284-1292, 2011.
    43. J. H. Wohlgemuth, D. W. Cunningham, P. Monus, J. Miller and A. Nguyen, “Long term reliability of photovoltaic modules”, Proceedings of the 4th World Conference on PV Energy Conversion, pp. 2050-2053, 2006.
    44. IEC61646, Thin-film terrestrial photovoltaic (PV) modules—design qualification and type approval, 2nd edition, IEC Central Office, 2008.
    45. S. Zamini, T. Krametz, R. Leidl, K. A. Berger and W. Hribernik, “Reliability, characterisation, and performance of photovoltaic modules”, Elektrotechnik & Informationstechnik, Vol. 126, pp. 335-339, 2009.
    46. T. W. Shield, D. B. Bogy and F. E. Talke, “Drop formation by DOD ink-jet nozzles: a comparison of experiment and numerical simulation”, IBM Journal of Research and Development, Vol. 31, pp. 96-110,1987.
    47. K. A. M. Seerden, N. Reis, J. R. G. Evans, P. S. Grant, J. W. Halloran and B. Derby, “Ink-jet printing of wax-based alumina suspensions”, Journal of the American Ceramic Society, Vol. 84, pp. 2514-2520, 2001.
    48. N. Reis, C. Ainsley and B. Derby, “Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors”, Journal of Applied Physics, Vol. 97, p. 094903, 2005.
    49. J. W. Yoon, B. I. Noh, B. K. Kim, C. C. Shur and S. B. Jung, “Wettability and interfacial reaction of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder”, Journal of Alloys and Compounds, Vol. 486, pp. 142-147, 2009.
    50. D. Q. Yu and L. Wang, “The growth and roughness evolution of intermetallic compounds of Sn-Ag-Cu/Cu interface during soldering reaction”, Journal of Alloys and Compounds, Vol. 458, pp. 542-547, 2008.
    51. Y. Zemen, S. C. Schulz, H. Trommler, S. T. Buschhorn, W. Bauhofer and K. Schulte, “Comparison of new conductive adhesives based on silver and carbon nanotubes for solar cells interconnection”, Solar Energy Materials & Solar Cells, Vol. 109, pp. 155-159, 2013.

    下載圖示 校內:2018-08-06公開
    校外:2018-08-06公開
    QR CODE