| 研究生: |
張庭維 Chang, Ting-Wei |
|---|---|
| 論文名稱: |
以混合田口粒子群演算法於鋰電池最佳四階段定電流充電模式之搜尋 Search for an Optimal Four-Stage Constant Current Charging Pattern for Li-Ion Batteries with Hybrid Taguchi-Particle Swarm Optimization |
| 指導教授: |
李建興
Lee, Chien-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 鋰離子電池 、田口方法 、粒子群演算法 、四階段定電流充電法 |
| 外文關鍵詞: | Lithium-ion battery, Taguchi method, Particle Swarm Optimization (PSO), Four-Stage Constant Current Charge Method |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來鋰離子電池的應用範圍愈加廣泛,不管是手持式電子產品亦或是電動載具,其大多採用鋰離子電池作為能量儲存裝置,故如何快速對電池充電並兼顧足過放電容量以及安全性為良好充電方法之關鍵。本文以四階段定電流充電法作為鋰離子電池之充電方式,提出利用粒子群最佳化演算法搭配兩個改良機制來搜尋四階段定電流充電法之最佳電流模式,同時紀錄實驗數據並加以分析,進而得出各階段最佳電流值。
本文亦由實驗比較四階段定電流充電法與傳統定電流定電壓充電法之充電時間與放電容量兩種特性,前者以四種不同大小的定電流組合模式對電池進行充電,經實測,雖然其使用較大充電電流能大幅縮短充電時間,但因損失較大而導致可被使用之放電容量較差;反之,較小充電電流則能提升電池放電容量但又拉長整體充電時間,故如何組合出最佳之充電電流模式以達兼具兩者間之優點是重要的。本論文所提出之四階段定電流充電法相對於傳統定電流定電壓充電法,雖然會損失約5%之電池放電容量,但可縮減充電時間約43%。
Nowadays lithium-ion batteries have become more increasingly used in various kinds of applications. Whether they are for handheld consumer electronics or electric vehicles, they all play a critical role in energy storage. Therefore, a well charging method of batteries is important and essential. To be a well charging method that delivers enough discharged capacity within shorter charge time and takes battery safety into account, this thesis applies a four-stage constant current charge (4SCC) method to charge lithium-ion batteries based on a hybrid Taguchi-based Particle Swarm Optimization (PSO) to find out the optimal charge pattern. In addition, experimental data were analyzed in order to obtain the optimal charge current in each stage for the 4SCC charge method.
In addition, this thesis studies the characteristics of charge time and discharge capacity for lithium-ion batteries with the 4SCC charge method as compared to the conventional constant current – constant voltage (CCCV) charge method. Although the charge time will be shorter when charging with the higher charge current based on the experimental results, batteries charged with larger currents may decrease their life. In contrast, smaller charge currents may increase charge time but may increase battery life. Hence, it is important to find the correct charge current pattern to optimize both charge time and battery life. For the proposed 4SCC charge method, it remains 95% of battery usage capacity with a decrease of 43% recharge time when comparing to the CCCV charge method.
參考文獻
[1] S.-S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” Journal of Power Sources, vol. 161, no. 2, pp. 1385-1391, 2006.
[2] R. C. Cope and Y. Podrazhansky, “The art of battery charging,” IEEE Battery Conference on Applications and Advances, pp.1-3, Jan. 12-15, 1999, Long Beach, CA, USA.
[3] W. Shen, T. T. Vo and A. Kapoor, “Charging algorithms of lithium-ion batteries: An overview,” IEEE Conference on Industrial Electronics and Applications, pp. 1-6, July 18-20, 2012, Singapore.
[4] E. Ayoub and N. Karami, “Review on the charging techniques of a Li-ion battery,” IEEE International Conference on Technological Advances in Electrical Electronics and Computer Engineering, pp. 50-55, Apr. 29-May 1, 2015, Beirut, Lebanon.
[5] T. Ikeya, N. Sawada, S. Takagi, J. Murakami, K. Kobayashi, T. Sakabe, E. Kousaka, H. Yoshioka, S. Kato, M. Yamashita, H. Narisoko, Y. Mita, K. Nishiyama, K. Adachi, and K. Ishihara, “Multi-step constant-current charging method for an electric vehicle valve-regulated, lead/acid batteries during night time for load-levelling,” Journal of Power Sources, vol. 75, no. 1, pp. 101-107, Sep. 1, 1998.
[6] Y.-H. Liu and Y.-F. Luo, “Search for an optimal rapid-charging pattern for li-ion batteries using the Taguchi approach,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3963-3971, Dec 2010.
[7] Y.-H. Liu, C.-H. Hsieh and Y.-F. Luo, “Search for an optimal five-step charging pattern for li-ion batteries using consecutive orthogonal arrays,” IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 654-661, June 2011.
[8] C.-L. Liu, Y.-S. Chiu, Y.-H. Liu, Y.-H. Ho and S.-S. Huang, “Optimization of a fuzzy-logic-control-based five-stage battery charger using a fuzzy-based taguchi method,” Energies, vol. 6, no. 7, pp. 3528-3547, Jul. 2013.
[9] S.-C. Wang and Y.-H. Liu, “A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-ion batteries,” IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2983-2993, May 2015.
[10] T. T. Vo, X. Chen, W. Shen and A. Kapoor, “New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation,” Journal of Power Sources, vol. 273, pp. 413-422, Jan. 2015.
[11] 陳明揚,“四階段定電流充電法應用於鋰離子電池之研究”,國立成功大學系統及船舶機電工程學系,碩士論文,民國106年。
[12] 王柏崴,“機器人之智慧型充電站與電源管理”,國立成功大學工程科學學系,碩士論文,民國97年。
[13] P. Nikolaidis and A. Poullikkas, “A comparative review of electrical energy storage systems for better sustainability,” Journal of Power Technologies, vol. 97, no. 3, pp. 220-245, 2017.
[14] A.-I. Stan, M. Świerczyński, D.-I. Stroe, and R. Teodorescu, “Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications—an overview,” International Conference on Optimization of Electrical and Electronic Equipment, pp. 713-720, May 22-24, 2014, Brasov, Romania.
[15] 柯泰年,“基於電化學交流阻抗法的鋰離子電池之老化檢測”,國立台灣大學應用力學研究所,碩士論文,民國105年。
[16] 阮彙權,“鋰離子電池參數估算方法之研究”,國立清華大學電機工程系,碩士論文,民國99年。
[17] M. Chen and G. A. Rinc´on-Mora, “Accurate electrical battery model capable of predicting runtime and I–V performance,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504-511, Jun. 2006.
[18] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” IEEE International Conference on Neural Networks, pp. 1942-1948, Nov. 27-Dec. 1, 1995, Perth, WA, Australia.
[19] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” IEEE Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, Oct.4-6, 1995, Nagoya, Japan.
[20] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” IEEE World Congress on Computational Intelligence, pp. 69-73, May 4-9, 1998, Anchorage, AK, USA.
[21] Z.-F. Hao, Z.-G. Wang and H. Huang, “A particle swarm optimization algorithm with crossover operator,” IEEE International Conference on Machine Learning and Cybernetics, pp. 1036-1040, Aug. 19-22, 2007, Hong-Kong, China.
[22] S.-Y. Ho, H.-S. Lin, W.-H. Liauh and S.-J. Ho, “OPSO: Orthogonal Particle Swarm Optimization and its application to task assignment problems,” IEEE Transactions on Systems, Men and Cybernetics, vol. 38, no. 2, pp. 288-298, Mar. 2008.
[23] 李勇醇,“混合田口運算技術與粒子群演算法之上行正交分頻多重存取系統之載波頻率偏移估計”,國立台北科技大學電機工程系,碩士論文,民國100年。
[24] 王俊凱,“混合田口粒子群演算法之研究及其於模糊控制器之設計”,國立成功大學電機工程系,碩士論文,民國103年。
[25] E. Elbeltagi, T. Hegazy and D. Grierson, “Comparison among five evolutionary-based optimization algorithms,” Journal of Advanced Engineering Informatics, vol. 19, no. 1, pp. 43-53, 2005.
[26] 李輝煌,田口方法:品質設計的原理與實務,第四版,高立圖書有限公司,民國100年。
[27] Sanyo UR14500P 840mAh datasheet, (Date of retrieval: Oct. 2017):
http://www.awilco-multiplex.dk/files/pdf/Batteries%20Li-Ion/Sanyo_Lithium _Ion_catalogue_10_2007.pdf.
[28] 陳榮志、謝定良、李政哲、陳旭偉,“鋰電池充電器性能與安全測試之研究”, 經濟部標準檢驗局自行研究計畫98年度,經濟部標準檢驗局台中分局,民國98年。
[29] “A look into the atomic world of batteries”, (Date of retrieval: May 2018):
http://www.carlsbergfondet.dk/da/Forskningsaktiviteter/Forskningsprojekter/Internationaliseringsstipendier/A-Look-into-the-Atomic-World-of-Batteries
校內:2023-07-05公開