簡易檢索 / 詳目顯示

研究生: 劉彥汶
Liu, Yen-Wen
論文名稱: 鋼筋混凝土柱於高溫中之熱變形預測
Prediction of Thermal Deformation of Reinforced Concrete Columns Subjected to Elevated Temperature
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 143
中文關鍵詞: 火害溫度混凝土
外文關鍵詞: column, fire, temperature, concrete
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋼筋混凝土為現今房屋結構材料之主體,而火災為建築物損害的一大因素。本研究旨在探討鋼筋混凝土柱構件在高溫中及冷卻時的變形,同時利用ANSYS軟體分析試體內部溫度變化,進而使用相關資料預測鋼筋混凝土柱構件在高溫與冷卻中之變形狀況。
    本研究共測試2座實尺寸之柱試體NC1及NC2,在0.45 軸壓及ISO 834標準升溫曲線加溫測試兩小時後冷卻,探討服務載重下,整體升溫及冷卻過程中試體內部溫度變化及軸向變形,然後進行殘餘強度試驗,探討其強度及變形狀況。
    在高溫中混凝土保護層剝落對試體溫度分布影響甚劇,鋼筋混凝土柱在高溫中雖然本身承受0.45 之軸壓作用,但因熱變形讓柱體產生膨脹現象,NC1和NC2量測膨脹量分別為1.14 mm及0.41 mm,冷卻17小時後分別有11.08 mm及31.42 mm之壓縮量。

    Reinforced concrete is the primary construction material of buildings nowadays, and fire is one of important factors causing damage to buildings. This thesis aims at studying the deformation of reinforced concrete column at elevated temperature and cooling condition. Meanwhile, the finite element software ANSYS is utilized to simulate temperature distribution and to predict deformation of column at elevated temperature and cooling condition.
    In experimental study, two full-scale column specimens, NC1and NC2, were tested under axial compression of 0.45 and ISO 834 standard fire exposure for two hours. The temperature variation and deformation of specimens were studied. After the elevated temperature and cooling test, the residual strength test was carried out to investigate residual strength and deformation of column.
    The spalling of cover concrete seriously affected the temperature distribution of specimens at elevated temperature stage. The column specimens sustained the axial compression during the elevated temperature test, but exhibited axial expansion. Specimens NC1 and NC2 had 1.14 mm and 0.41 mm axial expansion, respectively. After 17 hours cooling, specimen NC1 and NC2 shortened 11.08 and 31.42 mm, respectively.

    目錄 摘要 I Abstract II 誌謝 III 表目錄 VII 圖目錄 IX 符號表 XIII 第一章 緒論 1 1-1 研究動機及目的 1 1-2 研究方法 1 第二章 文獻回顧 2 2-1 混凝土在高溫中之性質 2 2-2 鋼筋在高溫中之性質 12 2-3 混凝土於高溫中之熱應變 16 2-3-1 熱應變(εth) 16 2-3-2 暫態潛應變(εtr) 19 2-3-3 瞬態應力關聯應變(εσ) 22 第三章 試驗規劃及試驗方法 24 3-1 實尺寸柱構件試體之規劃與製作 24 3-2 加載與加溫設備 30 3-3 量測儀器及量測方法 32 3-3-1 量測儀器 32 3-3-2 量測方法 33 3-4 試驗程序及方法 36 3-5 材料試驗 38 3-5-1 混凝土圓柱試體的試驗規劃及試驗程序 38 3-5-2 竹節鋼筋的試體規劃及試驗程序 40 第四章 數值模擬與分析 44 4-1 試體之數值模擬簡介 44 4-2 熱學參數及構件溫度場 47 4-3 熱應變預測 51 第五章 結果與討論 78 5-1 高溫試驗中、後柱構件表面之觀察 78 5-2 高溫試驗柱試體內部溫度變化 91 5-2-1 柱內部溫度變化之探討 91 5-2-2 柱內部溫度實測值與預測值比較 108 5-3 柱軸向變形之探討 125 5-3-1 柱於高溫冷卻之柱軸向變形 125 5-3-2 柱量測值與預測值之比較 135 第六章 結論 137 參考文獻 140

    1. European Committee, “Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,” EN 1992-1-2:2004: E.
    2. European Committee, “Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,” ENV 1992-1-2:1995.
    3. ACI Committee 216, “Guide for Determining the Fire Endurance of Concrete Elements,” American Concrete Institute, 1994.
    4. Anderberg Y., “Spalling Phenomena of HPC and OC,” NIST Workshop on Fire Performance of High Strength Concrete, Gaithersburg, Feb. 13-14 1997.
    5. Hertz, K. D., “Limits of Spalling of fire-exposed concrete,” Journal of Fire Safety, Vol. 38, 2003, pp. 103-116.
    6. Khoury, G. A.; Grainger, B. N.; and Sullivan, P. J. E., “Transient Thermal Strain of Concrete: Literature Review, Conditions within Specimen and Behavior of Individual Constituents,” Magazine of Concrete Research, Vol. 37, No. 132, September 1985, pp. 131-143.
    7. Khoury G. A.; Grainger, B. N.; and Sullivan P. J. E., “Strain of Concrete During First Heating to 600˚C Under Load,” Magazine of Concrete Research, Vol. 37, No. 133, December 1985, pp. 195-215.
    8. Schneider, U., and Schneider, M., “An Advanced Transient Concrete Model for the Determination of Restraint in Concrete Structures Subjected to Fire,” Journal of Advanced Concrete Technology, Vol. 7, No. 3, October 2009, pp. 403-413.
    9. Purkiss, J. A., Fire Safety Engineering Design of Structures, Oxford, Butterworth Heinemann, 1996.
    10. Lie, T. T., Structural fire protection, New York: American Society of Civil Engineers, 1992.
    11. Thelandersson, S., “Modeling of Combined Thermal and Mechanical Action in Concrete,” Journal of Engineering Mechanics, Vol. 113, No. 6, 1987, pp. 893-906.
    12. Bazant, Z. P., and Chern J. C., “Concrete Creep at Variable Humidity: Constitutive Law and Mechanism,” Materials and Structures, Vol. 103, No. 18, 1985, pp.1-20.
    13. Anderberg, Y., and Thelandersson, S., “Stress and Deformation Characteristics of Concrete at High Temperatures: 2 Experimental Investigation and Material Behavior Model,” Bulletin 54, Sweden (Lund): Lund Institute of Technology, 1976.
    14. Schneider, U.; Schneider, M.; and Franssen, J.-M., “Consideration of Nonlinear Creep Strain of Siliceous Concrete on Calculation of Mechanical Strain under Transient Temperatures as a Function of Load History.” In: Tan , K. H.; Kodur, V. K. R.; and Tan, T.H., Eds. Fifth International Conference – Structures in Fire SIF 08, Singapore 28-30, May 2008 Singapore: Research Publishing Service, pp. 463-476.
    15. Schneider, U.; Schneider, M.; and Franssen, J.-M., “Numerical Evaluation of Load Induced Thermal Strain in Restraint Structures Compared with an Experimental Study on Reinforced Concrete Columns,” In: Interscience Communications, Eds. 11th International Conference and Exhibition, Fire and Materials, San Francisco 26-28 Janurary 2009, 26th – 28th Janurary 2009, London: Interscience Communications Ltd, pp. 485-497.
    16. Nielsen, C. V.; Pearce, C. J.; and Bicanic, N., “Theoretical Model of High Temperature Effects on Uniaxial Concrete Member under Elastic Restraint,” Magazine of Concrete Research, Vol. 54, No. 4, 2002, pp. 239-249.
    17. Li, L., and Purkiss, J. A., “Stress-Strain Constitutive Equations of Concrete Material at Elevated Temperatures,” Fire Safety Journal, Vol. 40, 2005, pp. 669-686.
    18. Terro, M. J., “Numerical Modeling of the Behavior of Concrete Structures in Fire,” ACI Structure Journal, Vol. 95, No. 2, 1998, pp. 183-93.
    19. Khoury G. A.; Grainger, B. N.; and Sullivan P. J. E., “Strain of Concrete During First Heating to 600˚C Under Load,” Magazine of Concrete Research, Vol. 37, No. 133, 1985, pp. 195-215.
    20. Lie, T. T., and Lin, T. D., “Fire Performance of Reinforced Concrete Columns,” in ASTM STP 882, Fire Safety: Science and Engineering, 1985, pp. 176-205.
    21. Schneider, U., “Modeling of Concrete Behavior at High Temperatures,” In: Anchor, R. D.; Malhotra, H. L.; and Purkiss J. A., Proceeding of international conference of design of structures against fire, 1986, pp. 53-69.
    22. ACI Committee 209, “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures,” American Concrete Institute, 1992.
    23. 張朝輝,「ANSYS熱分析教程與實例解析」,中國鐵道出版社,北京(2007)。
    24. 張君輔,「鋼筋混凝土梁柱複合構件受高溫之行為研究─普通混凝土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
    25. 林岱蔚,「鋼筋混凝土梁柱複合構件受高溫之行為研究─自充填混凝土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
    26. 黃瑞賢,「鋼筋混凝土梁柱複合構件受高溫之行為研究─普通混凝土外柱之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
    27. 施玟宇,「鋼筋混凝土梁柱複合構件受高溫之行為研究─自充填混凝土外柱之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。

    下載圖示 校內:2018-09-04公開
    校外:2018-09-04公開
    QR CODE