| 研究生: |
陳治宇 Chen, Zhi-Yu |
|---|---|
| 論文名稱: |
嘉南地區地質構造之砂盒物理模型研究 A study of the sandbox modeling of Geological Structures in the Chiayi-Tainan Area |
| 指導教授: |
林慶偉
Lin, Ching-Weei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 構造三角帶 、嘉南地區 |
| 外文關鍵詞: | triangle zone |
| 相關次數: | 點閱:63 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
嘉南前麓地區之地質構造,可視為台灣本島弧陸碰撞運動變形的一部份。本區以西北-東南向之左鎮斷層為界,左鎮斷層以北地區之地表地質構造特性顯示出典型的覆瓦狀逆衝斷層構造,左鎮斷層以南地區在東側為覆瓦狀逆衝斷層之特性,其西則有構造三角帶之發育。左鎮以北區域之逆衝斷層由西自東分別有觸口斷層(最西)、崙後斷層、竹頭崎斷層、平溪斷層、旗山斷層(最東)之岀露。其中崙後斷層以西之關子嶺背斜構造,其地下構造形貌尚有爭議,學者多數同意關子嶺背斜為多個逆衝斷塊堆疊時伴生之褶皺,但對於逆衝斷塊之上部脫離面—六重溪斷層,部分學者將其解釋為正斷層;亦有人將其解釋為反向逆衝斷層因而形成一構造三角帶(triangle zone)。
本研究針對嘉南前麓地區之地質構造,利用砂盒物理模型為分析工具,透過不同界面條件之實驗,評估關子嶺地區之地質構造發育模式與左鎮斷層鄰近地區地質構造發育差異之成因。研究結果發現當具斷坪-斷坡形貌之逆衝斷層於其上部斷坪之上存在一早期發育之弱面(上部脫離面),其位態傾向與下部斷坡傾向相反時,會有構造三角帶之發育並於斷坡處形成局部之構造高區。因此當六重溪斷層比對成模型中之反向逆衝斷層時,關子嶺背斜為多個逆衝斷塊堆疊時發育之構造三角帶在斷坡處伴生之褶皺。此外,左鎮斷層南側區域因有構造三角帶之發育(那拔林反向逆衝斷層-龍船斷層),此構造三角帶導致斷層南、北兩側變形量集中位置不同,促使左鎮斷層南、北兩側發育不同的構造型態而發育出撕裂斷層(tear fault),因此,左鎮斷層之發育可能是由於正斷層反轉發育走向滑移斷層所形成,且兼具撕裂斷層之特性。
本研究發現早期存在之反向弱面其發育位置不同,會影響構造三角帶發育形貌,本研究共歸納出三種不同形貌之構造三角帶:(1)反向逆衝斷層出露之構造三角帶,(2)" "形構造三角帶,(3)"人"形構造三角帶。
The geological structures of Chiayi-Tainan area could be view as one part of Arc-Continent Collision orogeny on Taiwan island. This area is divided by the NW-trending Tsochen fault into two regions. The exposed structures in the northern region exhibit typical imbricate structures which from west to east include Chukou fault, Lunhou fault, Chutouchi fault, Pingchi fault and Chishan fault.The southern part has the imbricate structures on its eastern side and a triangle zone on its western side. The Kuantzulin anticline locates in the west part of Lunhou fault. Most of previous studies show that the Kuantzulin znticline could be the co-generated fold of several duplexes, but some studies indicate the Liuchungchi fault is a normal fault and the anticline can be interpreted as a triangle zone.
This research uses sandbox model to evaluate the role of Tsochen fault on the structural development of the Chiayi-Tainan area. In addition, the genesis of the Kuantzulin anticline is also studied through the model simulation.
The study results show that the pre-existing weakness plane above the hanging wall flat in the flat-ramp-flat geometry is the main factor to control the initiation of a triangle zone. If the dip of the pre-existing fault is opposed to the dip of ramp, the triangle zone will form above the ramp. In addition, three different triangle zones (1)back thrust exposed triangle zone, (2) -shape triangle zone, and (3)人-shape triangle zone which depend on the location of pre-existing weakness plane are recognized. Compared to the regional geology, the Kuantzulin anticline can be interpreted as a triangle zone if the Liuchungchi fault is a west-dipping back thrust. In addition, a triangle zone develops in the south side of Tsochen fault which prompt different deformation style on its north and south side.
中國石油公司臺灣油礦探勘勘總處,十萬分之一台灣地質圖─嘉義,中國石油公司出版,1986。
中國石油公司臺灣油礦探勘勘總處,十萬分之一台灣地質圖─台南,中國石油公司出版,1989。
江婉綺、林慶偉,竹苗地區地質構造之砂盒物理模型研究,國立成功大學地球科學研究所碩士論文,104頁,2005。
林慶偉、周振榮,地質構造物理模型,探採研究彙報,第二十六期,第571-574頁,2004。
張國楨,台灣西部基盤高區對鄰近主要新構造影響之三維模擬,國立台灣大學地質學研究所碩士論文,129頁,1998。
黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏,斷層活動性觀測與地震潛勢評估高查研究,台灣陸斷層帶地質構造與地殼變形調查研究(5/5)-台灣西部麓山帶地區地下構造綜合分析,經濟部地質調查所,59頁,2004。
黃敏郎、林慶偉,北港高區對台灣造山帶前緣的影響:物理模型研究,中國地質學會八十五年年會暨學術研討手冊及論文摘要,第460-464頁,1996。
楊耿明、洪日豪、吳榮章、黃旭燦、丁信修、徐祥宏,斷層活動性觀測與地震潛勢評估高查研究,台灣陸斷層帶地質構造與地殼變形調查研究(1/5)-西南地區(觸口斷層),經濟部地質調查所,93頁,2001a。
Barnes, P.M., and Andrew Nicol, Formation of an active thrust triangle zone associated with structural inversion in a subduction setting, eastern New Zealand, Tectonics, vol. 23, TC1015, p.1-25,2004.
Calassou, S., Larroque, C., and Malavieille, J., Transfer zones of deformation in thrust wedges: An experimental study, Tectonophysics, v.221, p.325-344,1993.
Chang, Y.L., Lee, C.I., Lin, C.U., Hsu, C.H. and Mao, E.W., Inversion tectonics in the fold-thrust belt of the foothills of Chiayi-Tainan area, southwestern Taiwan, Petrol. Geol. Taiwan, n.30, p.163-176,1996.
Charlesworth, H.A.K. and Gagnon, L.G., Intercutaneous wedges, the triangle zone, and structural thickening of the Mynheer coal seam at Coal Velley in the Rocky Mountain Foothills of central Alerta, Bull. Can. Petrol. Geol., v.33, p.22-30,1985.
Couzens, B.A., and Wiltschko, D.V. The control of mechanical stratigraphy on the formation of triangle zones, Bull. Can. Petrol. Geol., v.44, no.2, p.165-179,1996.
Couzens, B.A., Vendeville, B.C. and Wiltschko, D.V., Duplex style and triangle zone formation: insights from physical modeling, Jour. Struct. Geol., v.25, p.1623-1644,2003.
Erickson, S.G., Mechanics of triangle zones and passive-roof duplexes: implications of finite element models, Tectonophysics, v.245, p.1-11,1995
Gordy, P.L., Frey, F.R., and Norris, D.K., Geological Guide for the Canadian Society of Petroleum Geologists and the 1977 Waterton-Glacier Part Field Conference, CSPG, Calgary, p.1-93,1977.
Huang, S.T., Yang, K.M., Hung, J.H., Wu, J.C., Ting, H.H., Mei, W.W., Hsu, S.H., and Lee, M., Deformation front development at the northeast margin of the Tainan basin, Tainan-Kaohsiung area, Taiwan, Marine Geophysical Researches, v.25, p.139-156,2004.
Hubbert, M.K., Theory of scale models as applied to the study of geologic structures, Geol. Soc. Am. Bull., v.48, p.1459-1520,1937.
Hubbert, M.K., Mechanical basis for certain familiar geologic structures, Grol. Soc. Am. Bull., v.62, p.355-372,1951.
Hung, J. H., Wiltschko, D.V., Lin, H.C., Hickman, J.B., Fang, P. and Bock, Y., Structure and motion of the southwestern Taiwan fold and thrust belt, TAO(Terrestrial, Atmospheric and Ocecnic Sciences), v.10, p.543-568,1999.
Jamison, W.R., Mechanical stability of the triangle zone : the backthrust wedge, Journal of Geophysical Research, v.98 p.20,015-20,030,1993.
Jones, P.B., Quantitative geometry of thrust and fold belt structures, AAPG, Methods in Exploration Series, no.6, p.1-26,1987.
Jones, P.B., Triangle zone geometry, terminology, and kinematics, Bull. Cana. Petrol. Geol., v.44, no.2, p.139-152,1996.
Lu, C.Y., and Malavieille, J., Obilque convergence,indentation and rotation tectonics in the Taiwan mountain belt : insightsfrom experimental modeling, Earth and Planetary Science Letters v.121, p.477-494,1994.
Lujan, M., Storti, F., Balaynya, J.C., Crespo-Blanc, A. and Rossetti, F., Role of decollement material with different rheological properties in the structure of the Aljibe thrust imbricate (Flysch Trough, Gibraltar Arc), an Analogue Modeling Approach, Jour. Struct. Geol., v.25, p.867-881, 2003.
McMechan, M.E., Low-taper triangle zone geometry: an interpretation for the rocky mountain foothills, Pine River Area, British Columbia, Cana. Petrol. Geol., v.33, no.1, p.31-38,1985.
Naylor, M.A., Mandl, G., Sijpesteijn, C.H.K., Fault geometries in basement-controlled wrench fault under different initial stress states, Jour. Struct. Geol., v.8, p.737-752,1986.
Suppe, J., and Namson, J., Fault-bend origin of frontal folds of the western Taiwan fold-and-thrust belt, Petrol. Geol. Taiwan, no.16, p.1-18,1979.
Suppe, J., Imbricated structure of Western Foothills Belt, south central Taiwan, Petrol. Geol. Taiwan, no.17, p.1-16,1980.
Suppe, J., Kink method applied to structural interpretation of seismic sections, western Taiwan, Petrol. Geol. Taiwan, no.19, p.29-49,1983.
Vann, I.R., Graham, R.H., and Hayward, A.B., The structure of mountain fronts, Jour. Struct. Geol., v.8, p.215-227,1986.
Zwelgel, P., Arcuate accretionary wedge formation at convex plate margin corners: results of sandbox analogue experiments, Jour. Struct. Geol., v.20, no.12, p.1597-1609,1998.