簡易檢索 / 詳目顯示

研究生: 陳彥棋
Chen, Yan-Chi
論文名稱: 利用分子動力學研究tRNALys3與mRNA密碼子之交互作用
The interactions between tRNALys3 and mRNA codon using molecular dynamics simulations
指導教授: 黃吉川
Hwang, chi-chung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 分子動力學模擬轉移核醣核酸訊息核醣核酸
外文關鍵詞: molecular dynamics, tRNA, mRNA
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用分子動力學模擬賴氨酸轉移核醣核酸(tRNALys3)與訊息核醣核酸(mRNA)密碼子之交互作用結構穩定性,其密碼子分別為AAA與AAG,並且使用GROMACS分子動力學模擬軟體,以及選擇GROMOS96作用力場當作模擬的勢能,模擬的環境為水溶液中,共加入了79個鈉離子(Na+)來中和整體系統的電性。由RMSD值的結果顯示,tRNALys3的反密碼子與mRNA的密碼子AAG間的擾動相較於其與密碼子AAA間的擾動還來的大,這意味著tRNALys3與mRNA的密碼子AAA結合後,整體結構呈現較穩定的趨勢。此外,由RMSF值的結果顯示,經過修飾後的第34與第37個位置的核苷酸,與mRNA的密碼子產生交互作用後,此兩個特定位置的核苷酸其擾動會比無交互作用時大。最後,在整個模擬過程中,我們發現單獨tRNALys3的反密碼子臂和環(anticodon stem and loop;ASL)結構會呈現穩定的螺旋二級結構,反觀tRNALys3與密碼子AAA以及AAG結合後,其ASL結構將會旋開,而呈現另一種穩定的U形結構,此構形的轉換可能影響tRNALys3在轉譯過程中從核醣體的A位點到P位點的易位。

    In this paper, the structual stability of the interactions between wild-type tRNALys3 and mRNA codon, i.e. AAA and AAG, have been performed using molecular dynamics (MD) simulations. The simulated models contain the individual tRNALys3, interaction between tRNALys3 and AAA codon, and interaction between tRNALys3 and AAG codon. MD simulations were performed using the GROMACS simulation program using the GROMOS96 (ffG43a1) force field. From the RMSD measurement, the results indicated the interaction between tRNALys3 and AAG codon has larger fluctuation than AAA codon. This phenomenon implies that the structure is more stable while tRNALys3 interacts to AAA codon. Furthermore, from the RMSF calculations, it is show that the modified tRNALys3 at specific 34 and 37 bases bear larger fluctuations while tRNALys3 interacts to AAA or AAG codons. Finally, the secondary structure of individual tRNALys3, i.e. anticodon stem and loop (ASL), displaying the structurally stable preference during the entire simulation time, whereas the ASL structure produce rotation and further form the U-shape while tRNALys3 bound to the AAA and AAG codons. The structural switch from the helix to U-shape may affect the translocation of ribosome from the A-site to P-site.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 Х 本文組織架構 ХII 第一章 緒論 1 1-1研究背景 1 1-1-1 遺傳物質簡介 1 1-1-2核醣核酸(RNA)簡介 4 1-1-3 tRNA與轉譯 7 1-2文獻回顧 12 1-3研究動機 17 第二章 分子模擬建構與分析方法 18 2-1 物理模型建構 18 2-1-1網路資料庫 18 2-1-2修飾核酸分子建檔流程 19 2-2 分子動力學概論 27 2-2-1 勢能函數介紹 27 2-2-2 分子動力學加速演算方法 31 2-3 GROMACS模擬流程 34 2-3-1 GROMACS 軟體簡介 34 2-3-2 GROMACS 模擬指令 34 第三章 結果與討論 41 3-1 能量分析 41 3-2均分根誤差分析(Root Mean Square Derivation,RMSD) 42 3-3 迴轉半徑(Radius of gyration) 46 3-4均方根波動分析(Root Mean Square Fluctuations,RMSF) 47 3-5氫鍵(hydrogen bond)分析 50 3-6距離矩陣圖(Distance matrix) 51 第四章 結論與展望 55 4-1 結論 55 4-2 未來展望 57 參考文獻 58 附錄相關參數設定 67 作者自述 73

    [1]MacLeod, O.T., McCart, M., and MacLeod, C.M., Studies on the Chemical Nature of the Substance, Journal of Experimental Medicine, 79, 137-158, 1944.
    [2]Crick, F., Watson, J., A Structure of Deoxyribonucleic Acid, Nature, 171, 737-738, 1953.
    [3]Littlefield, J.W., Keller, E.B., Gross, J., Zamecnik, P. C., Studies on Cytoplasmic Ribonucleoprotein Particles form the Liver of the Rat, Journal of Biological Chemistry, 217, 1955.
    [4] Keller, E.B., Zamecnik, P.C., Loftfield, R.B., The role of Microsomes in the Incorporation of Amino Acids into Proteins, Journal of Histochemistry and Cytochemistry, 2, 378-386, 1954.
    [5]Monod, J., On the Mechanism of Molecular Interactions in the Control of Cellular Metabolism, Endocrinology, 78, 412-25, 1966.
    [6]Cohn, M., Kepes, A., Monod, J., Role of Lactose and Its Metabolic Products in the Induction of the Lactose Operon in Escherichia Coli, Biochimica et biophysica acta, 95, 634-639, 1965.
    [7]Jacob, F., Ullman, A., Monod, J., The Promotor, A Genetic Element Necessary to the Expresion of an Operon, C R Hebd Seances Acad Sci, 258, 3125-3128, 1964.
    [8]Jacob, F., Monod, J., Biochemical and Genetic Mechanisms of Regulation in the Bacterial Cell, Bulletin de la Société de chimie biologique, 46, 1499-1532, 1964.
    [9]Labuda, D, and D.Pörschke, Multistep mechanism of codon recognition by transfer ribonucleic acid, Biochemistry, 19, 3799-3805, 1980.
    [10]Harvey, S.C., Prabhakaran,M., Mao, B., and McCammon, J.A., Phenylalanine transfer RNA:molecular dynamics simulation, Science, 223, 1189-1191, 1984.
    [11] Harvey, S.C., Prabhakaran,M., Mao, B., and McCammon, J.A., Molecular dynamics simulation of phenylalanine transfer RNA. I. Methods and general results, Biopolymers, 24, 1169-1188, 1985.
    [12]Nilsson, L., and Karplus, M., Molecular dynamics simulation of the anticodon arm of phenylalanine transfer RNA. In Structure and Dynamics of RNA, Plenum Press, New York, 151-159, 1986.
    [13]Auffinger, P., Louise-May, S. and Westhof, E., Multiple molecular dynamics simulations of the anticodon loop of tRNAAsp in aqueous solution with counterions, Journal of the American Chemical Society, 117, 6720-6726, 1995.
    [14]Auffinger, P., and Westhof, E., RNA hydration: Three nanoseconds of multiple molecular dynamics simulations of the solvated tRNAAsp anticon hairpin, Journal of Molecular Biology, 269, 326-341, 1997.
    [15]Auffinger, P., Louise-May, S. and Westhof, E., Molecular Dynamics Simulations Solvated Yeast tRNAAsp, Journal of Molecular Biology, 76 , 50-54, 1999.
    [16]Lahiri, A., and Nilsson, L., Molecular Dynamics of the Anticodon Domain of Yeast tRNAPhe:Codon-Anticodon Interaction, Biophysical Journal, 97, 2276-2289, 2000.
    [17]BÉNAS, P., BEC, G., KEITH, G., MARQUET, R., EHRESMANN, C., EHRESMANN, B., and DUMAS, P., The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA, 6, 1347–1355, 2000.
    [18]Yokoyama, S., and Nishimura, S., Modified nucleosides and codon recognition. In Soll,D. and RajBhandary,U.L. (eds), tRNA:Structure, Biosynthesis and Function.American Society for Microbiology,Washington, DC. 207-223.1995.
    [19]Agris, P.F., Deocoding the genome :a Modified viem, Nuclec Acids Research,32, 223-238, 2004.
    [20]Sakurai, M., Ohtsuki, T., and Watanabe, K., Modification at position 9 with 1-methyladenosine is crucial for Structure and function of nematode mitochondrial tRNAs lacking the entire T-arm, Nucleic Acids Research, 33, 1653-1661, 2005.
    [21]Blaise, M., Becker, H.D., Keith, G., Cambillau, C., Lapointe, J., Giege, R., and Kern, D., A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon, Nuclec Acids Research, 32, 2768-2775, 2004.
    [22]Isel, C., Marquet, R., Keith G., Ehresmann, C., and Ehresmann, B., Modigied nucleotides of tRNA31ys modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription, Journal of Biological Chemisity, 268, 25269-25272, 1993.
    [23]Phelps, S.S., Jeinic, O., and Joseph, S., Universally conserved interactions between the ribosome and the anticodon stem-loop of A site tRNA important for translocation, Molecular Cell, 10, 799-807, 2002.
    [24]Phelps, S.S., Malkiewicz, A., Agris, P.E., and Joseph, S., Modified nucleotides in tRNALys and tRNAVal are important for translocation, Journal of Molecular Biology, 338, 439-444, 2004.
    [25]Kruger, M., Pedersen, S. and Hagervall, T.G., The modification of the wobble base tRNAGlu modulates the translation rate of glutamic acid codons in vivo, Journal of Molecular Biology, 284, 621-631.1998.
    [26] Brierley, I., Meredith, M., Bloys, A.J., and Hagervall, T.G., Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting, Journal of Molecular Biology, 270, 360-373, 1997.
    [27]Durant, P.C., and Davis, D.R., Stabilization of the anticodon stem-loop of tRNALys,3 by A+-C base pair and by pseudouridine, Journal of Molecular Biology, 285, 115-131, 1999.
    [28]Durant, P.C., and Davis, D.R., The effects of pseudouridine and pH on the structure and dynamics of the anticodon stem-loop of tRNA Lys,3. Nucleic Acids Symposium Series, 36, 56-57, 1997.
    [29]Stuart, J.W., Gdaniec ,Z., Guenther ,R., Marszalek ,M., Sochacke ,E., Malkiewicz ,A., and Agris, P.F., Functional anticodon architectureof human tRNA Lys,3 incldes disruption of intraloop hydrogen bonding by the baturally occurring amino acid modification, t6A, Biochemistry, 39, 13396-13404, 2000.
    [30]Sundaram, M., Durant, P.C., and Davis, D.R., Hypermodified nucleosides in the anticodon of tRNA Lys stabilize a canonical U-turn structure, Biochemistry, 39, 12575-12584, 2000.
    [31]Durant, P.C., Baji, A.C., Sundaram, M., Kumar, R.K. and Davis, D.R., Structural effects of hypermiodified nucleosides in the Escherichia coli and human tRNA Lys anticodon loop: the effect of nucleosides s2U, mcm5s2U, mnm5s2U,t6A.and ms2t6A, Biochemistry, 44, 8078-8089, 2005.
    [32]Benas, P., Bec, G., Marquet, R., Ehtesmann, C., Ehresmamm, B. and Dumas, P., The crystal structure of HIV reverse-transcription primer tRNA Lys,3 shows a canonical anticodon loop, RNA, 6 ,1347-1355, 2000.
    [33]Lustig, F., Elias, P., Axberg, T., Samuelsson, T., Tittawella, I., and Lagerkvist, U., Codon reading and translational error, Journal of Molecular Biology , 256, 2635–2643.1981.
    [34]Yarian, C., Townsend, H., Czestkowski, W., Sochacka, E.,Malkiewicz, A., Guenther, R., Miskiewicz, A., and Agris, P.F., Accurate translation of the genetic code depends on tRNA modifiednucleosides, Journal of Molecular Biology, 227, 16391–16395, 2002.
    [35]Davis, D.R., Veltri, C.A., and Nielsen, L., An RNA model system for investigation of pseudouridine stabilization of the codon–anticodon interaction in tRNALys, tRNAHis and tRNATyr, Journal of Biomolecular Structure & Dynamics, 15, 1121–1132, 1998.
    [36]McCrate, N.E., Varner, M.E., Kim, K.I., Nagan, M.C., Molecular dynamics simulations of human tRNA(Lys,3)(UUU): the role of modified bases in mRNA recognition, Nucleic Acids Research, 34, 5361-5368,2006.
    [37]Bilbille, Y., Vendeix, F.A.P., Guenther, R., Malkiewicz, A., Ariza, X., Vilarrasa, J., and Paul, F., Agris.The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs, Nucleic Acids Research, 37, 3342–3353, 2009.
    [38]Wei, C., and Srivastava, D., Nanomechanics of carbon nanofibers:Structural and elastic properties, Applined Physics Letters, 85, 12, 2004.
    [39]Haile, J., Molecular dynamics simulation: Elementary methods, John Wiley& Sons, Inc., New York, 1997.
    [40]Papaport, D., The Art of Molecular Dynamics Simulation, Cambridge University Press,London, 1997.
    [41]Lindahl, E., Hess,B., van der Spoel, D., GROMACS 3.0: a package for molecular simulation and trajectory analysis, Journal of Molecular Modeling, 7, 306-317, 2001.
    [42]Scott, W.R.P., Hunenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W. F., The GROMACS biomolecular simulation program package, Journal of Physical Chemistry A, 103, 3596-3607, 1999.
    [43]Jorgensen, W.L., Chandrasekhar, J., and Madura, J.D., Comparison of simple potential functions for simulating liquid water, Journal of Chemical Physics, 79, 926-935, 1983.
    [44]Irving, J.H., and Kirkwood, J.G., The statistical mechanical thory of transport properties. IV. The equations of hydrodynamics, Journal of Chemical Physics, 8, 817-829, 1950.
    [45]Haile, J.M., Molecular dynamics simulation, elementary methods, John Wiley&Sons, Inc., 1992.
    [46]Darden, T., York, D., Pedersen, L., Particle mesh Ewarld:An N*log(N) method for Ewald sums in large systems, Journal of Chemical Physics, 98, 10089-10092, 1993.
    [47]Sprinzl, M., and Vassilenko, K.S., Compilation of tRNA sequences and sequences of tRNA genes, Nucleic Acids Research, 33, 139-149.2005.
    [48]Agris, P.F., Decoding the genome:a modified view, Nucleic Acids Research, 32 ,223-238, 2004.
    [49]Bjork, G.R., Biosynthesis and function of modified nucleosides. In Söll,D. and RajBhandary,U.L.(eds),tRNA: Structure,Biosynthesis, and Function, American Socitety for Microbiology Press, Washington, DC, 165-206, 1995.
    [50]Agris, P.F., The importance of being modified:roles of modified nucleosides and Mg2+ in RNAstructure and function, Progress in Nucelic Acid Research And Molecular Biology, 53, 79-129, 1996.
    [51]Davis, D.R., Veltri, C.A., and Nielsen, L., An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys,tRNAHis and tRNATyr, Journal of Biomolecular Structure & Dynamics, 15, 1121-1132, 1998.
    [52]Durant, P.C. and Davis, D.R., Stabilization of the anticodon stem-loop of tRNALys3 by an A+-C base pair and by pseudouridine, Journal of Molecular Biology, 285, 115-131, 1999.
    [53]Murphy, F.V., Ramakrishnan, V., Malkiewicz, A., and Agris, P.F., The role of modifications in codon discrimination by tRNALuyusu, Nature Strucural & Molecular Biology, 11, 1186-1191. 2004.
    [54]Chen, Y., Sierzputowska-Gracz, H., Guenther, R., Everett, K. and Agris, P.F., 5-Methylcytidine is required for cooperative binding of magnesium(2+) and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA, Biochemistry, 32,10249-10253, 1993.
    [55]Nobles, K.N., Yarian, C.S., Liu, G., Guenther, R.H. and Agris, P.F., Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding. Nucleic Acids Research, 30, 4751-1760, 2002.
    [56]Cabello-Viilegas, J., Tworowska, I. and Nikonowicz, E.P., Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe, Biochemistry, 43, 55-66, 2004.
    [57] Nichols, W.L., Rose, G.D., Ten Eyck, L.F., and Zimm, B.H., Rigid domains in proteins:an algorithmic approach to their entification. Proteins, 23, 38-48, 1995.

    下載圖示 校內:2012-09-02公開
    校外:2013-09-02公開
    QR CODE