| 研究生: |
陳家蓉 Chen, Chia-Jung |
|---|---|
| 論文名稱: |
以氟化高分子塗佈製備雙疏及化學穩定性與自癒功能的聚酯紡織品 Fabrication of Amphiphobic, Chemically Stable, Self-Healing Polyester Fabrics by Using Fluorinated Polymer Coatings |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 雙疏紡織品 、含氟高分子塗佈 、化學穩定 、自癒 |
| 外文關鍵詞: | amphiphobic fabrics, fluorinated polymer coating, chemical resistance, self-healing |
| 相關次數: | 點閱:108 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於雙疏聚酯纖維紡織品的製備,藉由鹼前處理並以含氟高分子塗佈創造出具有超疏水、疏油的特性及自癒功能(self-healing)等抗物理、化學特性的織物。研究中採用濕式蝕刻的前處理,利用氫氧化鈉對聚酯纖維蝕刻,創造出奈米粗糙度後再利用浸塗法將低表面能量材料的含氟高分子塗佈於織物表面上。在此選用含氟共聚物(Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP)為主材料,利用兩步驟改質將3-氨基丙基三甲氧基矽烷(APTMS)及1H, 1H, 2H, 2H-全氟癸基三乙氧基矽烷(FAS-17)對PVDF-HFP疏水改質,使織物達到雙疏的性質。
實驗結果顯示,以PVDF-HFP及FAS-17作塗佈會使織物疏油性不足,若以兩步驟改質則能有效改善疏油性,而以鹼前處理再塗佈含氟溶夜可使表面粗糙度上升,提高接觸角以促使整體的疏液性些許提升,由此得到超疏水外,對乙二醇(47.7 mN/m)的接觸角為144.3°,對表面張力大於27.1mN/m的液體之接觸角則大於133°,並可疏至正辛烷(21.4mN/m)。由於FAS-17的存在使織物具備自癒功能;因PVDF-HFP的耐化學穩定性極佳,使紡織品可抗強酸鹼。
In addition to the commonly achievable superhydrophobicity, oleophobicity and other functionalities such as stain/chemical resistances and self-healing ability are desirable for the modern fabrics. Amphiphobic, chemically stable, and self-healing polyester fabrics were fabricated by using polymer coatings in this work. Hydrophobically-modified (HM) poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) was prepared through a two-step reactions in acetone using 3-aminopropyltrimethoxysilane (H2N-(CH2)3-Si-(OCH3)3) and 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (F3C-(CF2)7-(CH2)2-Si-(OC2H5)3) in the first and second reaction steps, respectively. This coating solution was then applied onto the twill weave polyester fabric, which was pretreated with alkaline hydrolysis, using a dip-coating method. The as-fabricated surfaces exhibited extreme liquid repellency as signified by high static contact angles (≧110.9∘) against six pure liquids (water, ethylene glycol, hexadecane, pentadecane, nonane, octane) with surface tension values ranging from 72.8 to 21.4 mN/m. Furthermore, this coating showed chemical stability to strong acid (96% sulfuric acid) and strong base (38% NaOH). The coating also exhibited self-healing property as revealed by the static contact angle change with the plasma-and-heat treatment cycles. This simple and effective polymer coating may find its application in protective clothing among others.
1. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8.
2. Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 1997, 79 (6), 667-677.
3. Zimmermann, J.; Seeger, S.; Reifler, F. A., Water shedding angle: a new technique to evaluate the water repellent properties of superhydrophobic surfaces. Textile Research Journal 2009, 79 (17), 1565-1570.
4. Chu, Z.; Seeger, S., Superamphiphobic surfaces. Chemical Society Reviews 2014, 43 (8), 2784-2798.
5. Li, S.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y., A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A 2017, 5 (1), 31-55.
6. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 1936, 28 (8), 988-994.
7. Cassie, A.; Baxter, S., Wettability of porous surfaces. Transactions of the Faraday Society 1944, 40, 546-551.
8. Feng, X.; Jiang, L., Design and creation of superwetting/antiwetting surfaces. Advanced Materials 2006, 18 (23), 3063-3078.
9. Bormashenko, E.; Grynyov, R.; Chaniel, G.; Taitelbaum, H.; Bormashenko, Y., Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science 2013, 270, 98-103.
10. Liu, X.; Liang, Y.; Zhou, F.; Liu, W., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter 2012, 8 (7), 2070-2086.
11. Bico, J.; Thiele, U.; Quéré, D., Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 206 (1), 41-46.
12. Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E., Designing superoleophobic surfaces. Science 2007, 318 (5856), 1618-1622.
13. Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal effect: a superhydrophobic state with high adhesive force. Langmuir 2008, 24 (8), 4114-4119.
14. Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J., Adhesive force of a single gecko foot-hair. Nature 2000, 405 (6787), 681-685.
15. Lee, H.; Lee, B. P.; Messersmith, P. B., A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448 (7151), 338-341.
16. Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired super-antiwetting interfaces with special liquid− solid adhesion. Accounts of Chemical Research 2009, 43 (3), 368-377.
17. Khoo, H. S.; Tseng, F.-G., Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures. Nanotechnology 2008, 19 (34), 345603.
18. Lai, Y.; Lin, C.; Huang, J.; Zhuang, H.; Sun, L.; Nguyen, T., Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir 2008, 24 (8), 3867-3873.
19. Liu, X.; Ye, Q.; Yu, B.; Liang, Y.; Liu, W.; Zhou, F., Switching water droplet adhesion using responsive polymer brushes. Langmuir 2010, 26 (14), 12377-12382.
20. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Advanced Materials 2005, 17 (16), 1977-1981.
21. Das, A.; Schutzius, T. M.; Bayer, I. S.; Megaridis, C. M., Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films. Carbon 2012, 50 (3), 1346-1354.
22. Park, B. G.; Lee, W.; Kim, J. S.; Lee, K. B., Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 370 (1), 15-19.
23. Cao, L.; Gao, D., Transparent superhydrophobic and highly oleophobic coatings. Faraday Discussions 2010, 146, 57-65.
24. Lai, Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L., Designing superhydrophobic porous nanostructures with tunable water adhesion. Advanced Materials 2009, 21 (37), 3799-3803.
25. Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y. K., “Lock‐and‐key” geometry effect of patterned surfaces: wettability and switching of adhesive force. Small 2009, 5 (1), 90-94.
26. Zhao, X. D.; Fan, H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-dependent tunable adhesion of superhydrophobic MnO2 nanostructured film. Langmuir 2011, 27 (7), 3224-3228.
27. Bohn, H. F.; Federle, W., Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (39), 14138-14143.
28. Zhao, W.; Wang, L.; Xue, Q., Fabrication of low and high adhesion hydrophobic Au surfaces with micro/nano-biomimetic structures. The Journal of Physical Chemistry C 2010, 114 (26), 11509-11514.
29. Xi, J.; Jiang, L., Biomimic superhydrophobic surface with high adhesive forces. Industrial & Engineering Chemistry Research 2008, 47 (17), 6354-6357.
30. Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C., Smart skin patterns protect springtails. PloS One 2011, 6 (9), e25105 (6).
31. Cao, L.; Hu, H.-H.; Gao, D., Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 2007, 23 (8), 4310-4314.
32. Cao, L.; Price, T. P.; Weiss, M.; Gao, D., Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 2008, 24 (5), 1640-1643.
33. Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E., Robust omniphobic surfaces. Proceedings of the National Academy of Sciences 2008, 105 (47), 18200-18205.
34. Tuteja, A.; Choi, W.; McKinley, G. H.; Cohen, R. E.; Rubner, M. F., Design parameters for superhydrophobicity and superoleophobicity. MRS Bulletin 2008, 33 (08), 752-758.
35. Zhou, H.; Zhao, Y.; Wang, H.; Lin, T., Recent development in durable super‐liquid‐repellent fabrics. Advanced Materials Interfaces 2016, 3 (23), 1600402 (20).
36. Kota, A. K.; Kwon, G.; Tuteja, A., The design and applications of superomniphobic surfaces. NPG Asia Materials 2014, 6 (7), e109 (16).
37. Joly, L.; Biben, T., Wetting and friction on superoleophobic surfaces. Soft Matter 2009, 5 (13), 2549-2557.
38. Jiang, T.; Guo, Z.; Liu, W., Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. Journal of Materials Chemistry A 2015, 3 (5), 1811-1827.
39. Wang, L.; Xi, G.; Wan, S.; Zhao, C.; Liu, X., Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 2014, 21 (4), 2983-2994.
40. Zeng, C.; Wang, H.; Zhou, H.; Lin, T., Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating. RSC Advances 2015, 5 (75), 61044-61050.
41. Li, G.; Wang, H.; Zheng, H.; Bai, R., A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes− azide polymer composites. Langmuir 2010, 26 (10), 7529-7534.
42. Zhao, Y.; Xu, Z.; Wang, X.; Lin, T., Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. Langmuir 2012, 28 (15), 6328-6335.
43. Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Wang, X.; Lin, T., Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Advanced Materials 2012, 24 (18), 2409-2412.
44. Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Lin, T., Robust, self‐healing superamphiphobic fabrics prepared by two‐step coating of fluoro‐containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Advanced Functional Materials 2013, 23 (13), 1664-1670.
45. Zhou, H.; Wang, H.; Niu, H.; Fang, J.; Zhao, Y.; Lin, T., Superstrong, chemically stable, superamphiphobic fabrics from particle‐free polymer coatings. Advanced Materials Interfaces 2015, 2 (6), 1400559 (8).
46. Wang, H.; Xue, Y.; Ding, J.; Feng, L.; Wang, X.; Lin, T., Durable, self‐healing superhydrophobic and superoleophobic surfaces from fluorinated‐decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angewandte Chemie International Edition 2011, 50 (48), 11433-11436.
47. Wang, H.; Zhou, H.; Gestos, A.; Fang, J.; Lin, T., Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Applied Materials & Interfaces 2013, 5 (20), 10221-10226.
48. Wang, H.; Zhou, H.; Gestos, A.; Fang, J.; Niu, H.; Ding, J.; Lin, T., Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly (3, 4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane. Soft Matter 2013, 9 (1), 277-282.
49. Xue, C.-H.; Li, Y.-R.; Zhang, P.; Ma, J.-Z.; Jia, S.-T., Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Applied Materials & Interfaces 2014, 6 (13), 10153-10161.
50. Han, M. S.; Park, Y.; Park, C. H., Development of superhydrophobic polyester fabrics using alkaline hydrolysis and coating with fluorinated polymers. Fibers and Polymers 2016, 17 (2), 241-247.
51. 楊毓民, 張鑑祥., 分子層級的薄膜表面形態控制-逐層組裝技術. 化工技術 2004, 12.
52. Wang, H.; Zhou, H.; Niu, H.; Zhang, J.; Du, Y.; Lin, T., Dual‐layer superamphiphobic/superhydrophobic‐oleophilic nanofibrous membranes with unidirectional oil‐transport ability and strengthened oil–water separation performance. Advanced Materials Interfaces 2015, 2 (4), 1400506 (7).
53. Mizuno, K., Low refractive index coating composition for use in antireflection polymer film coatings and manufacturing method. U.S. Patent, US 7374812, 2008.
54. 陳志強. 以非溶劑誘導相分離的改善製程製備高透明全疏滑溜表面. 國立成功大學碩士論文, 2016.
55. Wu, S., Calculation of interfacial tension in polymer systems, Journal of Polymer Science: Polymer Symposia 1971, 34 (1), 19-30.
56. Kwok, D. Y.; Neumann, A. W., Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science 1999, 81 (3), 167-249.
57. Zhao, Q.; Liu, Y.; Abel, E., Effect of temperature on the surface free energy of amorphous carbon films. Journal of Colloid and Interface Science 2004, 280 (1), 174-183.
58. Zhou, H., Durable non-wetting fabrics: their preparation and wicking function. Deakin University, 2014.