簡易檢索 / 詳目顯示

研究生: 呂晏州
Lu, Yen-Chou
論文名稱: 針對電車內建飛輪能量交換單元之無感測控制及監測
Sensorless Control and Surveillance on Flywheel Energy Exchange Unit Embedded in Electric Vehicles
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 199
中文關鍵詞: 飛輪儲能系統無感測磁場導向控制適應擴展型卡爾曼濾波器弱磁損失最小化滑動模式控制模糊控制硬體迴路
外文關鍵詞: Flywheel Energy Storage System, Sensorless Field Oriented Control, Adaptive Extended Kalman Filter, Field Weakening, Loss Minimization, Sliding Mode Control, Fuzzy Logic Control, Hardware-in-the-Loop
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對掛載於電動車(Electric Vehicle, EV)之飛輪儲能系統(Flywheel Energy Storage System, FESS),提出一轉速追蹤及減少能耗的控制策略。 控制架構以無感測(Sensorless)之直接磁場導向控制(Direct Field Oriented Control, DFOC)為基礎,將梯度下降法(Gradient Descent, GD)以及遞迴最小平方法(Recursive Least Sqaure Method, RLS)與擴展型卡爾曼濾波器(Extended Kalman Filter, EKF)進行結合,構成一可即時(Real-time)估測的新型估測器: 適應擴展型卡爾曼濾波器(Adaptive Extended Kalman Filter, AEKF),成功改善EKF因感應馬達(Induction Motor, IM)之系統參數變化而產生估測誤差過大的問題。 此外,本研究對弱磁(Field Weakening)進行延伸,將FOC(Field Oriented Control, FOC)一般經由離線所建立的弱磁曲線,改為對轉子磁通(Rotor Magnetic Flux)的直接控制,並基於馬達/發電機單元(Motor/Generator Unit, MGU)掛載不同轉動慣量(Moment of Inertia)之飛輪時,給予合適的線上(On-line)磁通控制策略,使其可達到弱磁運轉以及磁能損失最小化的目的,包含了適用於低慣量的滑動模式損失最小化策略(Loss Minimization Sliding Mode Control, LMSMC)以及適用於高慣量的模糊弱磁策略(Field Weakening Fuzzy Logic Control, FWFLC)。
    為了驗證完整控制架構可達到即時控制之效果,本研究將控制策略寫入數位訊號處理器(Digital Signal Processor, DSP),並配合變頻器(Inverter)驅動無載及掛載高慣量鋁合金飛輪之MGU。 實驗結果說明了在狀態估測、轉速追蹤以及損失最小化之控制結果與電腦模擬時一致,證實了本控制策略在理論與實務層面均有良好的成效。 而為了初步驗證車載飛輪之可行性,本研究架設了硬體迴路(Hardware-in-the-Loop, HIL)實驗平台,模擬實體飛輪儲能系統在虛擬車輛中對於能量充放之動態,藉此驗證電動車內之飛輪能量交換單元之能量可控性,並探討動能與電能間的轉換效率。

    This thesis is aimed at motor speed tracking and power loss minimization strategy based on sensorless Field Oriented Control (FOC) for Flywheel Energy Storage System (FESS) embedded in Electric Vehicles (EVs). A new observer named as Adaptive Extended Kalman Filter (AEKF), integrated with Gradient Descent (GD), Recursive Least Square (RLS), and Extended Kalman Filter (EKF), is proposed. AEKF possesses an adaptive attribute able to tolerate the parameter uncertainties at Induction Motors (IMs). Unlike the conventional approach by constructing field weakening curve off-line, rotor flux is controlled directly by the magnetic flux controller via closed loop. By generalized field weakening scheme, two on-line field weakening and loss minimization strategies, i.e., Loss Minimization Sliding Mode Control (LMSMC) and Field Weakening Fuzzy Logic Control (FWFLC), are designed with respect to Motor/Generator Unit (MGU) equipped with flywheels in low/high moment of inertia. To evaluate the performance of the proposed control strategies in capacity-limited computational environment, the control strategies are lodged into a Digital Signal Processor (DSP). In addition, to examine the feasibility of FESS embedded in EVs, the Hardware-in-the -Loop (HIL) experimental test rig is constructed as well. According to the experimental results, the state estimation, motor speed tracking, and power loss minimization are fairly similar to computer simulations which are undertaken earlier. To sum up, the proposed control strategies can be realizable in the real world.

    摘要 I 誌謝 VIII 目錄 IX 表目錄 XIV 圖目錄 XV 符號對照表 XXII 第一章 緒論 1 1.1 前言與研究背景 1 1.2 文獻回顧 4 1.2.1 控制架構 4 1.2.2 狀態估測器 8 1.2.3 損失最小化策略 11 1.3 研究動機與目的 12 1.4 論文架構 15 第二章 感應馬達模型建立 16 2.1 感應馬達模型 17 2.1.1 座標轉換 17 2.1.1.1 克拉克轉換 18 2.1.1.2 帕克轉換 20 2.1.2 等效模型 20 2.1.3 磁能損失模型 28 2.1.4 小結 30 2.2 弱磁曲線 30 2.3 車載飛輪 34 第三章 控制策略設計與模擬結果 39 3.1 控制架構 40 3.2 卡爾曼估測器 40 3.2.1 擴展型卡爾曼估測器 41 3.2.2 適應擴展型卡爾曼估測器 47 3.2.3 電腦模擬結果 56 3.3 弱磁策略 63 3.4 電流控制 66 3.4.1 抗飽和PI與耦合補償 68 3.5 轉速與磁通控制 72 3.5.1 轉速控制 73 3.5.2 磁通控制 73 3.5.3 小結 75 3.6 參考磁通 75 3.6.1 滑動模式損失最小化策略 76 3.6.2 模糊弱磁策略 78 3.6.3 電腦模擬結果 83 3.7 完整架構與電腦模擬結果 87 3.7.1 低慣量MGU控制性能模擬 88 3.7.1.1 控制性能表現(MGU無載) 89 3.7.1.2 估測結果 98 3.7.1.3 控制性能 103 3.7.1.4 能耗表現 107 3.7.2 高慣量MGU控制性能模擬 110 3.7.2.1 估測與控制結果 110 3.7.2.2 飛輪系統之充放電表現 115 3.7.2.3 MGU效率 119 3.7.3 小結 123 第四章 實驗平台架設與驗證 125 4.1 實驗平台設計 126 4.1.1 數位訊號處理器 127 4.1.2 變頻器與虛擬電池 130 4.1.3 馬達/發電機單元 131 4.1.4 降壓電路 133 4.2 硬體迴路平台架設 134 4.2.1 CAN與PCI介面卡 137 4.2.2 監控 140 4.3 馬達運轉實驗 142 4.3.1 感應馬達運轉實驗結果 143 4.3.2 小結 148 4.4 硬體迴路與充放電實驗 149 4.4.1 MGU運轉實驗結果 149 4.4.2 小結 159 第五章 結論與未來展望 160 5.1 結論 160 5.2 未來展望 166 參考文獻 168 附錄A 馬達參數 177 附錄B TMS320F28377D 179 附錄C 空間向量脈寬調製 181 C.1 理論分析 181 C.2 開關頻率與死區補償 187 C.3 模擬結果 187 附錄D 滑動模式控制 191 附錄E 模糊控制 195 自述 199

    [1] D. Saddington, The global market for stop-start systems: Trends & forecasts to 2020. 2014.
    [2] 李名揚, 科學人(第107期/2011年1月號): SM107. 2011.
    [3] The quickest car in the world, with record-setting acceleration, range and performance. Available: https://www.tesla.com/roadster
    [4] M. Pressman. (2017). Understanding Tesla's lithium ion batteries. Available: https://evannex.com/blogs/news/understanding-teslas-lithium-ion-batteries
    [5] A. Munoz-Garcia, T. A. Lipo, and D. W. Novotny, "A new induction motor V/F control method capable of high-performance regulation at low speeds," IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 813-821, 1998.
    [6] P. C. Perera, F. Blaabjerg, J. K. Pedersen, and P. Thogersen, "A sensorless, stable V/F control method for permanent-magnet synchronous motor drives," IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 783-791, 2003.
    [7] K. Matsuse, T. Yoshizumi, S. Katsuta, and S. Taniguchi, "High-response flux control of direct-field-oriented induction motor with high efficiency taking core loss into account," IEEE Transactions on Industry Applications, vol. 35, no. 1, pp. 62-69, 1999.
    [8] R. Bojoi, M. Lazzari, F. Profumo, and A. Tenconi, "Digital field-oriented control for dual three-phase induction motor drives," IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 752-760, 2003.
    [9] G. K. Singh, K. Nam, and S. Lim, "A simple indirect field-oriented control scheme for multiphase induction machine," IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1177-1184, 2005.
    [10] P. A. De Wit, R. Ortega, and I. Mareels, "Indirect field-oriented control of induction motors is robustly globally stable," Automatica, vol. 32, no. 10, pp. 1393-1402, 1996.
    [11] H. Kubota and K. Matsuse, "Speed sensorless field-oriented control of induction motor with rotor resistance adaptation," IEEE Transactions on Industry Applications, vol. 30, no. 5, pp. 1219-1224, 1994.
    [12] M. Cirrincione and M. Pucci, "An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model," IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 532-551, 2005.
    [13] C. Lascu, I. Boldea, and F. Blaabjerg, "A modified direct torque control for induction motor sensorless drive," IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 122-130, 2000.
    [14] J. K. Kang and S. K. Sul, "New direct torque control of induction motor for minimum torque ripple and constant switching frequency," IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1076-1082, 1999.
    [15] R. Marino, P. Tomei, and C. M. Verrelli, Induction motor control design. Springer Science & Business Media, 2010.
    [16] H. Kubota, K. Matsuse, and T. Nakano, "DSP-based speed adaptive flux observer of induction motor," IEEE Transactions on Industry Applications, vol. 29, no. 2, pp. 344-348, 1993.
    [17] G. Yang and T. H. Chin, "Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive," IEEE Transactions on Industry Applications, vol. 29, no. 4, pp. 820-825, 1993.
    [18] S. Maiti, C. Chakraborty, Y. Hori, and M. C. Ta, "Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power," IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 594-601, 2008.
    [19] V. M. Popov and R. Georgescu, "Hyperstability of control systems," 1973.
    [20] Y. R. Kim, S. K. Sul, and M. H. Park, "Speed sensorless vector control of induction motor using extended Kalman filter," IEEE Transactions on Industry Applications, vol. 30, no. 5, pp. 1225-1233, 1994.
    [21] G. G. Soto, E. Mendes, and A. Razek, "Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique," IEE Proceedings-Electric Power Applications, vol. 146, no. 3, pp. 282-288, 1999.
    [22] M. Barut, S. Bogosyan, and M. Gokasan, "Experimental evaluation of braided EKF for sensorless control of induction motors," IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 620-632, 2008.
    [23] M. Hilairet, F. Auger, and E. Berthelot, "Speed and rotor flux estimation of induction machines using a two-stage extended Kalman filter," Automatica, vol. 45, no. 8, pp. 1819-1827, 2009.
    [24] S. Jafarzadeh, C. Lascu, and M. S. Fadali, "State estimation of induction motor drives using the unscented Kalman filter," IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4207-4216, 2012.
    [25] C. Lascu, I. Boldea, and F. Blaabjerg, "Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives," IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 57-65, 2006.
    [26] J. Li, L. Xu, and Z. Zhang, "An adaptive sliding-mode observer for induction motor sensorless speed control," IEEE Transactions on Industry Applications, vol. 41, no. 4, pp. 1039-1046, 2005.
    [27] M. N. Uddin and S. W. Nam, "New online loss-minimization-based control of an induction motor drive," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 926-933, 2008.
    [28] B. Pryymak, J. M. Moreno-Eguilaz, and J. Peracaula, "Neural network flux optimization using a model of losses in induction motor drives," Mathematics and Computers in Simulation, vol. 71, no. 4-6, pp. 290-298, 2006.
    [29] G. C. Sousa, B. K. Bose, and J. G. Cleland, "Fuzzy logic based online efficiency optimization control of an indirect vector-controlled induction motor drive," IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp. 192-198, 1995.
    [30] C. Chakraborty and Y. Hori, "Fast efficiency optimization techniques for the indirect vector-controlled induction motor drives," IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 1070-1076, 2003.
    [31] F. Briz, A. Diez, M. W. Degner, and R. D. Lorenz, "Current and flux regulation in field-weakening operation [of induction motors]," IEEE Transactions on Industry Applications, vol. 37, no. 1, pp. 42-50, 2001.
    [32] L. Harnefors, K. Pietilainen, and L. Gertmar, "Torque-maximizing field-weakening control: design, analysis, and parameter selection," IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 161-168, 2001.
    [33] B. Adkins, The general theory of electrical machines. Chapman & Hall, 1957.
    [34] F. Abrahamsen, F. Blaabjerg, J. K. Pedersen, P. Z. Grabowski, and P. Thogersen, "On the energy optimized control of standard and high-efficiency induction motors in CT and HVAC applications," IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 822-831, 1998.
    [35] S. H. Kim and S. K. Sul, "Maximum torque control of an induction machine in the field weakening region," IEEE Transactions on Industry Applications, vol. 31, no. 4, pp. 787-794, 1995.
    [36] X. Xu, R. De Doncker, and D. Novotny, "Stator flux orientation control of induction machines in the field weakening region," in Industry Applications Society Annual Meeting, 1988., Conference Record of the 1988 IEEE, 1988, pp. 437-443: IEEE.
    [37] J. koujalagi, "Investigations on the behaviour of switched reluctance generator in normal and field weakening mode of operation," 2013.
    [38] J. J. Zhao and N. C. Tsai, "Intelligent optimal shift map and HIL experiment," 2017.
    [39] S. H. Wu and N. C. Tsai, "Optimal energy management strategy to reduce fuel consumption, emission and fluctuation of SOC for mild HEVs," 2017.
    [40] G. Welch and G. Bishop, "An Introduction to the Kalman Filter," University of North Carolina at Chapel Hill, 1995.
    [41] E. A. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, 2000, pp. 153-158: IEEE.
    [42] R. Da, "Failure detection of dynamical systems with the state Chi-square test," Journal of Guidance, Control, and Dynamics, vol. 17, no. 2, pp. 271-277, 1994.
    [43] R. Marino, S. Peresada, and P. Valigi, "Adaptive input-output linearizing control of induction motors," IEEE Transactions on Automatic Control, vol. 38, no. 2, pp. 208-221, 1993.
    [44] R. Marino, S. Peresada, and P. Tomei, "Global adaptive output feedback control of induction motors with uncertain rotor resistance," IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 967-983, 1999.
    [45] Q. Xia, M. Rao, Y. Ying, and X. Shen, "Adaptive fading Kalman filter with an application," Automatica, vol. 30, no. 8, pp. 1333-1338, 1994.
    [46] R. Krishnan, "Review of flux-weakening in high performance vector controlled induction motor drives," in Industrial Electronics, 1996. ISIE'96., Proceedings of the IEEE International Symposium on, 1996, vol. 2, pp. 917-922: IEEE.
    [47] S. H. Kim and S. K. Sul, "Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region," IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 512-518, 1997.
    [48] L. Harnefors and H. P. Nee, "Model-based current control of AC machines using the internal model control method," IEEE Transactions on Industry Applications, vol. 34, no. 1, pp. 133-141, 1998.
    [49] "TMS320x2833x, 2823x enhanced pulse width modulator (ePWM) module reference guide," Texas Instruments, 2009.
    [50] "TMS320F2837xD dual-core delfino microcontrollers," Texas Instruments, 2016.
    [51] "Digital motor control software library," Texas Instruments, 2003.

    無法下載圖示 校內:2021-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE