| 研究生: |
蔡百揚 Tsai, Pai-Yang |
|---|---|
| 論文名稱: |
利用類鑽碳薄膜改善發光二極體及封裝散熱之研究 Improvement of Thermal Management in GaN-based Light Emitting Diode Device and Package with Diamond-like Carbon Heat Spreading Layer |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 鋁基板 、類鑽碳 、氮化鎵 、發光二極體 、遠程螢光粉 |
| 外文關鍵詞: | Al-metal core PCB, diamond-like carbon, GaN, light emitting diode(LED), remote phosphor |
| 相關次數: | 點閱:105 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文中利用類鑽碳薄膜的高導熱率與高熱擴散率改善發光二極體元件磊晶內部熱聚集的現象。因為熱聚集會造成發光二極體元件界面溫度過高且會有自我加熱的效應產生,所以元件的性能與可靠度皆會受到破壞。在發光二極體元件加入類鑽碳熱擴散層之後,在兩倍或三倍的標準電流注入下,元件的介面溫度可降低5℃以上,並且在光通量可增加約5~10%。元件表面熱分布溫差與沒有類鑽碳的元件更為均勻。
論文中將類鑽碳應用在增加封裝基板的熱擴散為主。一般的鋁基板中間絕緣材料通常為導熱係數約8W/m.k,造成發光二極體產生的熱集中在元件固晶的位置,鋁基板的面積並無有效的被利用。而類鑽碳的高熱擴散率可以改善一般鋁基板的問題,同時也可以作為銅線路與鋁基板之間的絕緣層。在光通量熱衰減的實驗中,使用類鑽碳鋁基板作發光二極體之封裝可增加約7%。封裝體的介面溫度可降低10℃以上,發光二極體在經過1000小時的測試,元件的光通量可改善約3%。
除了元件與封裝基材的散熱能力之外,螢光粉的熱效應也是封裝散熱的要素之一。論文中利用遠程螢光粉的形式避免螢光粉與發光二極體元件直接接觸造成互相加熱的效應。在高電流的注入下,遠程螢光粉光通量沒有飽和或下垂的現象。與螢光粉直接塗佈在發光二極體的形式比較,色溫偏移的現象較不明顯。而可以利用遠程螢光粉不同的形狀設計達到廣角或特殊光型的應用。
在論文中提出利用類鑽碳材料改善發光二極體元件與封裝基材的散熱方式加上遠程螢光粉的應用可以設計出一個高效率及高可靠度的發光光源。
In this dissertation, the high thermal conductivity and thermal diffusivity of diamond-like carbon (DLC) could reduce the heat crowding phenomenon in the epitaxy layer of light-emitting diodes (LEDs). The performance and reliability of LED devices were damaged or decreased owing to the heat crowding phenomenon, leading to high junction temperature and self-heating effect in the LEDs. At two or three times injection current, the junction temperature of LEDs with DLC heat-spreading layer was decreased more than 5 °C. The relative light intensity was increased by approximately 5% to 10%. The surface temperature distribution of LED with DLC heat-spreading layer was more uniform than that of LED without DLC heat-spreading layer.
The thermal diffusivity of Al metal-core printed circuit board (PCB) was increased by using DLC as heat-spreading and insulating layer. Metal core PCB substrate limits thermal dissipation because of the low thermal conductivity of the insulating layer between the Cu circuit and Al substrate. Therefore, heat was crowded under the LED device area and not spread all over the Al substrate area. The DLC heat-spreading layer improved the low thermal conductivity with regular metal core PCB. For the measurement of light intensity droop at the thermal equilibrium, the light intensity of metal core PCB with DLC heat-spreading layer was improved by approximately 7%. The junction temperature was decreased by more than 10 °C. The relative light intensity was improved by 3% after turn-on of 1,000 h.
In addition to the heat dissipation capability of LED device and package material, the thermal effect of phosphor material is important in the LED package. The remote phosphor was directly attached to the metal-core printed circuit board (MCPCB), and then the phosphor layer and blue LED chip were separated by air. Therefore, the heat of the blue LED chip was indirectly conducted to the phosphor layer. At high injection current, the light intensity of remote phosphor type was not saturated and droop phenomenon was observed. For the correlated color temperature shift, the remote phosphor type was lower than the conventional phosphor coating technology. The former type can be designed with different shapes for different light pattern applications.
This dissertation demonstrated the high efficiency and reliability of white LED light source for the solid-state lighting. This light source is composed of remote phosphor, LEDs, and Al MCPCB with DLC heat-spreading layer.
[1] E. F. Schubert , Light-Emitting Diodes , Cambridge University Press ,Cambridge, UK 2006 .
[2] N. Zheludev, “The life and times of the LED-a 100-year history,” Nature Photonics vol. 1, no. 4, pp 189-192, 2007.
[3] N. Holonyak and S. F. Bevacqua , “Coherent (visible) Light Emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, no. 4, pp 82-83, 1962.
[4] S. Nakamura , T. Mukai and M. Senoh , “Candela-class High-brightness InGaN/AlGaN Double-heterostructure Blue-light-emitting-diode,” Appl. Phys. Lett., vol. 64, pp. 1687 – 1689, 1994.
[5] H. Amano , N. Sawaki , I. Akasaki and Y. Toyoda , “Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film using an AlN Buffer Layer,” Appl. Phys. Lett.,vol. 48, pp. 353 – 355, 1986.
[6] H. Amano , M. Kito , K. Hiramatsu and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation,” Jpn. J. Appl. Phys., vol. 28, no. 12, pp. L2112 – L2114, 1989.
[7] Y. Narukawa , M. Ichikawa , D. Sanga , M. Sano and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D, vol. 43, no. 35, pp. 354002 , 2010.
[8] Y. Shiimizu , K. Sakano , Y. Noguchi and T. Moriguchi ,” Light emitting device with blue light LED and phosphor components,” US Patent, 6614179, 2003 .
[9] T. Egawa, B. Zhang and H. Ishikawa, “High Performance of InGaN LEDs on (111) Silicon Substrates Grown by MOCVD,” IEEE Electron Device Letters, vol. 26, no. 3, pp. 169-171, 2005.
[10] K.C. Chen, R.W. Chuang, Y.K. Su, C.L. Lin, H.C. Hsu, J.Q. Huang, K.F. Yang, “High thermal dissipation of ultra high power light-emitting diodes by copper electroplating,” Electronic Components and Technology Conf., pp 734-736 Reno, Nevada, USA, 2007.
[11] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InXGa1-XN light-emitting diodes on Si substrates fabricated by Pd-In metal bonding and laser lift-off,” Appl. Phys. Lett., vol. 87, no. 18 pp.2822-2824, 2000.
[12] S. Kim, J. H. Jang, J. S. Lee, D. J. Duquette, “Stress behavior of electrodeposited copper film as mechanical supporters for light-emitting diodes,” Electrochimia Acta, vol. 52, issue.16 pp.5258-5265, 2007.
[13] C. F. Chu, C. C. Cheng, W. H. Liu, J. Y. Chu, F. H. Fan, H. C. Cheng, T. Doan and C. A. Tran, “High brightness GaN vertical light-emitting diodes on metal alloy for general lighting application,” Proc. IEEE, vol. 98, no. 7, pp. 1197–1207, July. 2010.
[14] G. E. Höfler, D. A. Vanderwater, D. C. DeFevere, F. A. Kish, , M. D. Camras, F. M. Steranka, and I. H. Tan, “Wafer bonding of 50‐mm diameter GaP to AlGaInP‐GaP light‐emitting diode wafers,” Appl. Phys. Lett., vol. 69, no. 6, pp.803-805, 1996.
[15] D. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, no. 2, pp. 310-320, 2002.
[16] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’shea, M. J. Ludowise, G. Christenson, Y. -C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett., vol. 78, no. 22, pp. 3379-3381, 2001.
[17] O. B. Shchekin,a_ J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN–GaN light-emitting diodes,” Applied Physics Letters, vol. 89, no. 7, pp. 071109 – 071109-3, 2006.
[18] http://www.cree.com/LED-Chips-and-Materials/Chips.
[19] J. H. Lee, S. M. Hwang, N. S. Kim and J. H. Lee, “InGaN-based high-power flip-chip LEDs with deep-hole-patterned sapphire substrate by laser direct beam drilling,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 698-700, 2010.
[20] C. L. Chuang, J. N. Aoh, Q. A. Liao, C. C. Hsu, S. J. Liao and G. S. Huang, “Gold Stud Bumps Flip-Chip Bonded onto Copper Electrodes with Titanium and Silver Layers,” J Electron Mater, vol. 37, no. 11, pp. 1742-1750, 2008.
[21] B. S. Cheng, C. E. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Power enhancement of GaN-based flip-chip light-emitting diodes with triple roughened surfaces,” Jpn. J. Appl. Phys., vol. 48, no. 4S, 04C115 , 2009.
[22] Y. T. Lai and C. Y. Liu. "Study of wetting reaction between eutectic AuSn and Au foil," Journal of electronic materials, vol. 35, no. 1, pp. 28-34, 2006.
[23] B.S. Siegel, “Measuring thermal resistance is the key to a cool semiconductor,” Electron., vol.51, pp.121-126, 1978.
[24] M. Rencz, “Thermal issues in stacked die packages,” 21st IEEE SEMI-THERM Symposium, pp. 307-312, 2005.
[25] A.Poppe, Y. Zhang, J. Wilson, G. Farkas, P. Szabo, J. parry, M. Rencz and V. Szekely, “Thermal measurement and modeling of multi-die packages,” IEEE Trans. Compon. Packag. Technol., vol. 32, no. 2, pp. 484-492, 2009.
[26] Joiner, Bennett, J. M. de Oca, S. Neelakantan, ”Measurement and Simulation of Stacked Die Thermal Resistances,” 22nd IEEE Semi-Therm Symp., pp. 210-215, 2006.
[27] K.M. Leung, A.C. Cheung, B.C. Liu, H.K. Woo, C. Sun, X.Q. Shi and S.T. Lee, “Measuring thermal conductivity of CVD diamond and diamond-like films on silicon substrates by holographic interferometry,” Diamond and Related Materials, vol. 8, pp. 1607 – 1610, 1999.
[28] C.M. Sung and M.C. Kan, “Cold cathode fluorescence light with amorphous diamond coated electrodes,” NSTI-Nanotech, vol. 1, pp. 239 – 243, 2006.
[29] R. H. Horng, K. C. Shen, C.H. Tien, S.C. Lin and D.S. Wuu, “Performance of Cu-plating vertical LEDs in heat dissipation using diamond-like carbon,” IEEE Electron Device Lett., vol. 35, no. 2, pp. 169-171, 2014.
[30] J.K. Sim, K. Ashok, Y.H. Ra, H.C. Im, B.J. Baek and C.R. Lee, “Characteristic enhancement of white LED lamp using low temperature co-fired ceramic-chip on board package,” Curr Appl Phys., vol. 12, no. 2, pp. 494-498, 2012.
[31] http://www.ioffe.ru/SVA/NSM/Semicond/Si/thermal.html
[32] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaN/thermal.html
[33] https://en.wikipedia.org/wiki/Gold
[34] https://en.wikipedia.org/wiki/Silver
[35] https://en.wikipedia.org/wiki/Copper
[36] C. H. Wei, and C. H. Chen, “The effect of thermal and plastic mismatch on stress distribution in diamond like carbon film under different interlayer/substrate system,” Diamond & Related Materials, vol. 17, no. 7, pp.1534-1540, 2008.
[37] C. Bois, P. Bodrogi, T.Q. Khanh, H. Winkler, “White LED light characteristics as a function of phosphor particle size,” ECS J. Solid State Sci. Technol., vol. 1, no. 5, pp.R131-R135, 2012.
[38] H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, and Y. J. Cheng, “Patterned structure of remote phosphor for phosphor-converted white LEDs,” Opt. Express., vol. 19, no. Suppl. 4, pp. A930–A936, 2011.
[39] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron., vol. 8, no. 2, pp. 339–345, 2002.
[40] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu,” Extracting phosphor-scattered photons to improve white LED efficiency,” Physica Status Solidi (a), vol. 202, no. 6, pp. R60-R62, 2005.
[41] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Express, vol. 18, no. 5, pp. 5055-5060, 2010.
[42] C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett., vol. 2, no. 11, pp. 1268-1277, 2011.
[43] K. J. Chen, B. C. Lin, H. C. Chen, M. H. Shih, C. H. Wang, H.T. Kuo, H. H. Tsai, M. Y. Kuo, S. H. Chien, P. T. Lee, C. C. Lin, H. C. Kuo, “Effect of the thermal characteristics of phosphor for the conformal and remote structures in white light-emitting diodes,” IEEE Photonics J., vol. 5, no. 5, p. 8200508, 2013.
[44] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, ” Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp 855-857, 2004.
[45] P. Hanzelka, T. Kralik, A. Maskova, V. Musilova and J. Vyskocil, ” Thermal radiative properties of a DLC coating,” Cryogenics, vol. 48, no. 9-10, pp. 455-457, 2008.
[46] http://www.icprotect.com.tw/articles-14.html
[47] http://www.glxpcb.com/MCPCB_01.asp
[48] S. Nakamura, “The roles of structural imperfections in InGaN/GaN/ AlGaN-based laser diodes,” Science, vol. 281, no. 5379, pp. 956–961, 1998.
[49] K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” Journal of applied physics, vol. 101, no. 3, pp. 033104-5, 2007.
[50] C. Tsallis, F. S. Barreto and E. D. Loh, “Generalization of the Planck radiation law and application to the cosmic microwave background radiation,” Physical Review E, vol. 52, no. 2, pp. 1447-1458, 1995.
[51] J. R. Howell, R. Siegel and M. P. Menguc, Thermal radiation heat transfer, CRC Press, Taylor & Francis Group 2010.
[52] L. Kim and M. W. Shin, “Thermal Resistance Measurement of LED Package with Multichips,” Components and Packaging Technologies, IEEE Transactions on, vol. 30, no. 4, pp. 632-636, 2007.
[53] M. Ha and S. Graham,” Development of a thermal resistance model for chip-on-board packaging of high power LED arrays,” Microelectronics Reliability, vol. 52, no. 5, pp. 836-844, 2012.
[54] L. Kim, J. H. Choi, S. H. Jang, and M. W. Shin, “Thermal analysis of LED array system with heat pipe,” Thermochimica Acta, vol. 455, no. 1-2, pp. 21-25, 2007.
[55] C. C. Yang, C. L. Chang, K. C. Huang and T. S. Laio, “The yellow ring measurement for the phosphor-converted white LED,” Physics Procedia, vol. 19, pp. 182–187, 2011.