簡易檢索 / 詳目顯示

研究生: 李恩亞
Li, Enya
論文名稱: 比較不同工作氣體非熱微電漿對於促進癌細胞凋亡之效能
A Comparison of the Effectiveness of Cancer Cell Apoptosis Under Non- Thermal Micro-Plasma Exposure with Different Working Gases
指導教授: 廖峻德
Liao, Jiunn-Der
共同指導教授: 王士豪
Wang, Shyh-Hau
劉浩志
Liu, Bernard Haochih
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 73
中文關鍵詞: 非熱微電漿活性氧(ROS)活性氮(RNS)細胞凋亡頭頸癌
外文關鍵詞: Non-thermal micro-plasma, reactive oxygen species (ROS), reactive nitrogen species (RNS), apoptosis, head and neck cancer
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿是具有生物材料應用潛力的第四態,其可以選擇性地促使癌細胞凋亡,並
    且同時不影響正常細胞的生長。大量研究顯示各種癌細胞在暴露於非熱微電漿後經 歷凋亡之現象,這是由於在電漿處理期間所產生的活性氧和活性氮物質和細胞作用 所造成。然而,鮮少關於在不同工作氣體下的癌細胞處理之研究。因此,在本研究 中,會比較氦氣與氦氣/氮氣混合電漿對三種頭頸癌細胞,即 SAS,CAL 27 和 FaDu 之抗癌效果。此外,亦整理其他使用不同工作氣體但相似電漿機台的研究數據與本 研究做比較,進而瞭解對於誘發細胞凋亡較佳的工作氣體組合。
    結果表明,非熱微電漿確實誘導了由活性物質產生引起的頭頸癌細胞凋亡。於 工作氣體中添加氧氣或氮氣,可以在細胞溶液中和細胞本體內產生更多的活性氧或 活性氮物質,進而促使更高的癌細胞凋亡率。此外,空氣電漿比氮氣電漿誘導更高 的癌細胞凋亡比例。由於潘寧效應,氦氣比氬氣有更高的電解離效果。又在非熱的 電漿暴露下,癌細胞凋亡主要由活性氧引起。因此,為了提高癌細胞的處理效果, 應將水或氧氣加入氦氣中。

    Plasma is the fourth state of matter with tremendous biomaterial application potential, selectively targeting cancer cells while leaving normal cells intact. A great number of studies showed positive results of various cancer cells undergoing apoptosis after being exposed to plasma due to the actions of reactive oxygen and nitrogen species (ROS/RNS) generated during plasma treatment. However, there is a lack of comparison on the treatment effectiveness of plasma with different feed gases. In this study, non-thermal plasmas (NTP) generated under different feed gases were employed to treat three head and neck cancer cell lines, namely SAS, CAL 27 and FaDu, and a comparison of the anticancer effect was made. Moreover, studies using similar plasma jets but with different operating parameters and working gases were also reviewed and compared.
    The results show that NTP does induce head and neck cancer cells apoptosis caused by the reactive species generated. More ROS/RNS were generated in the medium and within the cells with the addition of oxygen/nitrogen in the plasma working gas stream. In addition, air plasma induces higher cancer cell apoptosis than N2 plasma. He plasma shows better ionization than Ar plasma due to Penning effect. Under the exposure of NTP, cancer cell apoptosis is caused mainly by ROS. Thus, to improve the treatment effectiveness, H2O and O2 should be added to the He feed gases.

    摘要 II Abstract III 致謝 IV Contents V List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Motivation 4 1.3 Feasibility study 4 1.4 Objective 5 Chapter 2 Literature survey 6 2.1 Possible factors inducing cell apoptosis from the plasma 6 2.1.1 ROS and RNS 6 2.1.2 UV irradiation 9 2.1.3 pH change in media 9 2.1.4 Thermal damage 11 2.2 Plasma device studies both in vivo and in vitro 12 2.2.1 Different plasma devices and parameters in vitro studies 12 2.2.2 NTP treatment on cancer cells in vivo studies 16 2.2.3 The selectively killing effect of plasma 18 2.3 Cell death classification and the MAPK regulation of apoptosis 19 2.3.1 Categorization of cell death 19 2.3.2 MAPK regulates apoptosis 20 2.4 Three main non-thermal atmospheric plasma groups 20 2.5 Summary 21 Chapter 3 Materials and methods 22 3.1 Experimental design 22 3.2 Experimental materials 23 3.2.1 Cell culture 23 3.2.2 Non-thermal micro-plasma 24 3.3 Analysis 26 3.3.1 Fiber optic thermometer 26 3.3.2 Optical emission spectrum 26 3.3.3 ROS detection 27 3.3.4 RNS detection 27 3.3.5 Intracellular ROS measurement 28 3.3.6 Intracellular RNS measurement 28 3.3.7 Flow cytometry 28 3.3.8 Statistical analysis 29 Chapter 4 Reactive species generated from the plasma 31 4.1 Plasma temperature 31 4.2 The active species generated from the plasmas with different working gases 33 4.2.1 Optical emission spectrum wide scanning of He, He/N2, and Ar plasma jet 33 4.2.2 Semi-quantitation of the components within the He and He/N2 plasma 35 4.3 ROS/RNS level in the cell medium under He or He/N2 plasma exposure 37 4.3.1 ROS in cell containing medium after He or He/N2 plasma exposure 38 4.3.2 RNS level in the cell containing medium after He or He/N2 plasma exposure 43 4.4 ROS/RNS generation after plasma exposure with various working gases 46 4.5 Summary 51 Chapter 5 Cancer cells apoptotic evaluation 53 5.1 The cell response after plasma exposure 53 5.1.1 Intracellular ROS/RNS under plasma exposure with different working gases 53 5.1.2 Apoptotic cell rate under different working gas plasma exposure 58 5.2 The cell response under plasma exposure with different working gases 63 5.3 Summary 65 Conclusion 67 Perspective 68 References 69

    [1] C. Net. (2015, 16 Jan). Head and Neck Cancer - Overview. Available: http://www.cancer.net/cancer-types/head-and-neck-cancer/view-all
    [2] R. A. Stout, N. J. Beckman, S. R. Shelby, and S. M. Labott, "Psychological Issues in Head and Neck Cancer," in Head & Neck Cancer: Current Perspectives, Advances, and Challenges, J. A. Radosevich, Ed., ed Dordrecht: Springer Netherlands, 2013, pp. 751- 800.
    [3] J. Schlegel, J. Köritzer, and V. Boxhammer, "Plasma in Cancer Treatment," Clin. Plasma Med., vol. 1, pp. 2-7, 2013.
    [4] S. L. Fink and B. T. Cookson, "Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells," Infection and Immunity, vol. 73, pp. 1907-1916, 2005.
    [5] S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, "Preferential Induction of Apoptotic Cell Death in Melanoma Cells as Compared with Normal Keratinocytes Using a Non-Thermal Plasma Torch," Cancer Biology & Therapy, vol. 13, pp. 1299-1306, 2012.
    [6] H.-R. Metelmann, D. S. Nedrelow, C. Seebauer, M. Schuster, T. von Woedtke, K.-D. Weltmann, S. Kindler, P. H. Metelmann, S. E. Finkelstein, D. D. Von Hoff, and F. Podmelle, "Head and Neck Cancer Treatment and Physical Plasma," Clin. Plasma Med., vol. 3, pp. 17-23, 2015.
    [7] C. Hoffmann, C. Berganza, and J. Zhang, "Cold Atmospheric Plasma: Methods of Production and Application in Dentistry and Oncology," Medical Gas Research, vol. 3, pp. 21-21, 2013.
    [8] S. d. Valence, J.-C. Tille, C. Chaabane, R. Gurny, M.-L. Bochaton-Piallat, B. H. Walpoth, and M. Möller, "Plasma Treatment for Improving Cell Biocompatibility of a Biodegradable Polymer Scaffold for Vascular Graft Applications," European Journal of Pharmaceutics and Biopharmaceutics, vol. 85, pp. 78-86, 2013.
    [9] T. G. Klämpfl, G. Isbary, T. Shimizu, Y.-F. Li, J. L. Zimmermann, W. Stolz, J. Schlegel, G. E. Morfill, and H.-U. Schmidt, "Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest," Applied and Environmental Microbiology, vol. 78, pp. 5077-5082, 2012.
    [10] F. Intranuovo, R. Gristina, L. Fracassi, L. Lacitignola, A. Crovace, and P. Favia, "Plasma Processing of Scaffolds for Tissue Engineering and Regenerative Medicine," Plasma Chemistry and Plasma Processing, vol. 36, pp. 269-280, 2016.
    [11] L.-C. Xu and C. A. Siedlecki, "Effects of Surface Wettability and Contact Time on Protein Adhesion to Biomaterial Surfaces," Biomaterials, vol. 28, pp. 3273-3283, 2007.
    [12] S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, "Selective Killing of Ovarian Cancer Cells through Induction of Apoptosis by Nonequilibrium Atmospheric Pressure Plasma," Applied Physics Letters, vol. 100, p. 113702, 2012.
    [13] G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, "Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines," Plasma Chemistry and Plasma Processing, vol. 27, pp. 163-176, 2007.
    69
    [14] H. J. Ahn, K. I. Kim, N. N. Hoan, C. H. Kim, E. Moon, K. S. Choi, S. S. Yang, and J.-S. Lee, "Targeting Cancer Cells with Reactive Oxygen and Nitrogen Species Generated by Atmospheric-Pressure Air Plasma," PLoS ONE, vol. 9, p. e86173, 2014.
    [15] S. U. Kang, J. H. Cho, J. W. Chang, Y. S. Shin, K. I. Kim, J. K. Park, S. S. Yang, J. S. Lee, E. Moon, K. Lee, and C. H. Kim, "Nonthermal Plasma Induces Head and Neck Cancer Cell Death: The Potential Involvement of Mitogen-Activated Protein Kinase- Dependent Mitochondrial Reactive Oxygen Species," Cell Death and Disease, vol. 5, 2014.
    [16] A. G. Renehan, C. Booth, and C. S. Potten, "What Is Apoptosis, and Why Is It Important? Education and Debate," BMJ, vol. 322, pp. 1536-1538, 2001.
    [17] J. M. Adams and S. Cory, "The Bcl-2 Apoptotic Switch in Cancer Development and Therapy," Oncogene, vol. 26, pp. 1324-1337, 2007.
    [18] C.-Y. Wu, "To Study the Viability of Head and Neck Cancer Cells on Non- Thermal Micro-Plasma-Elicited Ros/Rns," Master, Department of Materials Science and Engineering, National Cheng Kung University, 2016.
    [19] T. Wada and J. M. Penninger, "Mitogen-Activated Protein Kinases in Apoptosis Regulation," Oncogene, vol. 23, pp. 2838-2849, 0000.
    [20] S. Y. Lee, S. U. Kang, K. I. Kim, S. Kang, Y. S. Shin, J. W. Chang, S. S. Yang, K. Lee, J. S. Lee, E. Moon, and C. H. Kim, "Nonthermal Plasma Induces Apoptosis in Atc Cells: Involvement of Jnk and P38 Mapk-Dependent Ros," Yonsei Medical Journal, vol. 55, pp. 1640-1647, 2014.
    [21] T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, and A. Okino, "Investigation of Reactive Species Using Various Gas Plasmas," RSC Advances, vol. 4, pp. 39901-39905, 2014.
    [22] H. M. Joh, S. J. Kim, T. H. Chung, and S. H. Leem, "Comparison of the Characteristics of Atmospheric Pressure Plasma Jets Using Different Working Gases and Applications to Plasma-Cancer Cell Interactions," AIP Advances, vol. 3, p. 092128, 2013.
    [23] S. Ikawa, K. Kitano, and S. Hamaguchi, "Effects of Ph on Bacterial Inactivation in Aqueous Solutions Due to Low-Temperature Atmospheric Pressure Plasma Application," Plasma Processes and Polymers, vol. 7, pp. 33-42, 2010.
    [24] S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, "Effects of Non-Thermal Plasma on Mammalian Cells," PLOS ONE, vol. 6, p. e16270, 2011.
    [25] F. A. Villamena, "Chemistry of Reactive Species," in Molecular Basis of Oxidative Stress, ed: John Wiley & Sons, Inc., 2013.
    [26] S. Mohades, N. Barekzi, H. Razavi, V. Maruthamuthu, and M. Laroussi, "Temporal Evaluation of the Anti-Tumor Efficiency of Plasma-Activated Media," Plasma Processes and Polymers, vol. 13, pp. 1206-1211, 2016.
    [27] H. J. Ahn, K. I. Kim, G. Kim, E. Moon, S. S. Yang, and J.-S. Lee, "Atmospheric-Pressure Plasma Jet Induces Apoptosis Involving Mitochondria Via Generation of Free Radicals," PLOS ONE, vol. 6, p. e28154, 2011.
    [28] G. J. Kim, W. Kim, K. T. Kim, and J. K. Lee, "DNA Damage and Mitochondria Dysfunction in Cell Apoptosis Induced by Nonthermal Air Plasma," Applied Physics Letters, vol. 96, p. 021502, 2010.
    [29] M. Vandamme, E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J. M. Pouvesle, and A. L. Pape, "Ros Implication in a New Antitumor Strategy Based on Non-Thermal Plasma," International Journal of Cancer, vol. 130, pp. 2185-2194, 2012.
    [30] H. Tanaka, M. Mizuno, F. Kikkawa, and M. Hori, "Interactions between a Plasma-Activated Medium and Cancer Cells," Plasma Medicine, vol. 6, pp. 101-106, 2016.
    70
    [31] R. Sensenig, S. Kalghatgi, E. Cerchar, G. Fridman, A. Shereshevsky, B. Torabi, K. P. Arjunan, E. Podolsky, A. Fridman, G. Friedman, J. Azizkhan-Clifford, and A. D. Brooks, "Retracted Article: Non-Thermal Plasma Induces Apoptosis in Melanoma Cells Via Production of Intracellular Reactive Oxygen Species," Annals of Biomedical Engineering, vol. 39, pp. 674-687, 2011.
    [32] C. Canal, R. Fontelo, I. Hamouda, J. Guillem-Marti, U. Cvelbar, and M.-P. Ginebra, "Plasma-Induced Selectivity in Bone Cancer Cells Death," Free Radical Biology and Medicine, vol. 110, pp. 72-80, 2017/09/01/ 2017.
    [33] F.-C. Lin, "Safety Assessment of a Din-Regulated Non-Thermal Micro- Plasma Device Using Wound Healing Porcine Model," Master, Department of Materials Science and Engineering, National Cheng Kung University, 2016.
    [34] E. A. Ratovitski, X. Cheng, D. Yan, J. H. Sherman, J. Canady, B. Trink, and M. Keidar, "Anti-Cancer Therapies of 21st Century: Novel Approach to Treat Human Cancers Using Cold Atmospheric Plasma," Plasma Processes and Polymers, vol. 11, pp. 1128-1137, 2014.
    [35] N. Barekzi, M. Laroussi, G. Konesky, and S. Roman, "Effects of Low Temperature Plasma on Prostate Cancer Cells Using the Bovie Medical J-Plasma® Device," Plasma Processes and Polymers, vol. 13, pp. 1189-1194, 2016.
    [36] J. Duan, X. Lu, and G. He, "The Selective Effect of Plasma Activated Medium in an in Vitro Co-Culture of Liver Cancer and Normal Cells," Journal of Applied Physics, vol. 121, p. 013302, 2017.
    [37] M. Laroussi, X. Lu, and M. Keidar, "Perspective: The Physics, Diagnostics, and Applications of Atmospheric Pressure Low Temperature Plasma Sources Used in Plasma Medicine," Journal of Applied Physics, vol. 122, p. 020901, 2017.
    [38] N. Barekzi and M. Laroussi, "Effects of Low Temperature Plasmas on Cancer Cells," Plasma Processes and Polymers, vol. 10, pp. 1039-1050, 2013.
    [39] K. D. Weltmann and T. Von Woedtke, "Plasma Medicine - Current State of Research and Medical Application," Plasma Physics and Controlled Fusion, vol. 59, 2017.
    [40] W. Li, K. N. Yu, L. Bao, J. Shen, C. Cheng, and W. Han, "Non-Thermal Plasma Inhibits Human Cervical Cancer Hela Cells Invasiveness by Suppressing the Mapk Pathway and Decreasing Matrix Metalloproteinase-9 Expression," Scientific Reports, vol. 6, p. 19720, 2016.
    [41] N. Barekzi and M. Laroussi, "Dose-Dependent Killing of Leukemia Cells by Low-Temperature Plasma," Journal of Physics D: Applied Physics, vol. 45, p. 422002, 2012. [42] M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi, R. Guerrero-Preston, and B. Trink, "Cold Plasma Selectivity and the Possibility of a
    Paradigm Shift in Cancer Therapy," British Journal of Cancer, vol. 105, pp. 1295-1301, 2011. [43] R. Guerrero-Preston, T. Ogawa, M. Uemura, G. Shumulinsky, B. L. Valle, F. Pirini, R. Ravi, D. Sidransky, M. Keidar, and B. Trink, "Cold Atmospheric Plasma Treatment Selectively Targets Head and Neck Squamous Cell Carcinoma Cells," International Journal
    of Molecular Medicine, vol. 34, pp. 941-946, 2014.
    [44] M. Keidar, A. Shashurin, O. Volotskova, M. Ann Stepp, P. Srinivasan, A.
    Sandler, and B. Trink, "Cold Atmospheric Plasma in Cancer Therapy," Physics of Plasmas, vol. 20, 2013.
    [45] B. S. Kwon, E. H. Choi, B. Chang, J. H. Choi, K. S. Kim, and H. K. Park, "Selective Cytotoxic Effect of Non-Thermal Micro-Dbd Plasma," Physical Biology, vol. 13, 2016.
    [46] S. J. Kim and T. H. Chung, "Cold Atmospheric Plasma Jet-Generated Rons and Their Selective Effects on Normal and Carcinoma Cells," Scientific Reports, vol. 6, 2016.
    71
    [47] X. Sun, M. Ai, Y. Wang, S. Shen, Y. Gu, Y. Jin, Z. Zhou, Y. Long, and Q. Yu, "Selective Induction of Tumor Cell Apoptosis by a Novel P450-Mediated Reactive Oxygen Species (Ros) Inducer Methyl 3-(4-Nitrophenyl) Propiolate," Journal of Biological Chemistry, vol. 288, pp. 8826-8837, 2013.
    [48] G. Kroemer, L. Galluzzi, P. Vandenabeele, J. Abrams, E. S. Alnemri, E. H. Baehrecke, M. V. Blagosklonny, W. S. El-Deiry, P. Golstein, D. R. Green, M. Hengartner, R. A. Knight, S. Kumar, S. A. Lipton, W. Malorni, G. Nuñez, M. E. Peter, J. Tschopp, J. Yuan, M. Piacentini, B. Zhivotovsky, and G. Melino, "Classification of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2009," Cell death and differentiation, vol. 16, pp. 3-11, 2009.
    [49] X. Sui, N. Kong, L. Ye, W. Han, J. Zhou, Q. Zhang, C. He, and H. Pan, "P38 and Jnk Mapk Pathways Control the Balance of Apoptosis and Autophagy in Response to Chemotherapeutic Agents," Cancer Letters, vol. 344, pp. 174-179, 2014.
    [50] J. M. Olson and A. R. Hallahan, "P38 Map Kinase: A Convergence Point in Cancer Therapy," Trends in Molecular Medicine, vol. 10, pp. 125-129, 2004.
    [51] S. Cagnol and J.-C. Chambard, "Erk and Cell Death: Mechanisms of Erk- Induced Cell Death – Apoptosis, Autophagy and Senescence," FEBS Journal, vol. 277, pp. 2-21, 2010.
    [52] G. S. Wu, "The Functional Interactions between the P53 and Mapk Signaling Pathways," Cancer Biol Ther, vol. 3, pp. 156-61, 2004.
    [53] M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. Van Dijk, and J. L. Zimmermann, "Plasma Medicine: An Introductory Review," New Journal of Physics, vol. 11, 2009.
    [54] M.-H. T. Ngo, J.-D. Liao, P.-L. Shao, C.-C. Weng, and C.-Y. Chang, "Increased Fibroblast Cell Proliferation and Migration Using Atmospheric N2/Ar Micro- Plasma for the Stimulated Release of Fibroblast Growth Factor-7," Plasma Processes and Polymers, vol. 11, pp. 80-88, 2014.
    [55] R. M. Royall, "The Effect of Sample Size on the Meaning of Significance Tests," The American Statistician, vol. 40, pp. 313-315, 1986.
    [56] M. S. Mann, R. Tiede, K. Gavenis, G. Daeschlein, R. Bussiahn, K.-D. Weltmann, S. Emmert, T. v. Woedtke, and R. Ahmed, "Introduction to Din-Specification 91315 Based on the Characterization of the Plasma Jet Kinpen® Med," Clin. Plasma Med., vol. 4, pp. 35-45, 2016.
    [57] G. Uchida, A. Nakajima, K. Takenaka, K. Koga, M. Shiratani, and Y. Setsuhara, Gas Flow Rate Dependence of the Discharge Characteristics of a Plasma Jet Impinging onto the Liquid Surface vol. 43, 2015.
    [58] S. Ming, C. Lijun, and C. Chong, Measurement of Non-Thermal Plasma in Atmospheric Pressure Air Negative Corona Discharge, 2010.
    [59] F. Grzegorzewski, Influence of Non-Thermal Plasma Species on the Structure and Functionality of Isolated and Plant-Based 1,4-Benzopyrone Derivatives and Phenolic Acids, 2011.
    [60] O.-H. Chin and C. Y. Choo, Study of Non-Thermal Plasma Jet with Dielectric Barrier Configuration in Nitrogen and Argon vol. 1588, 2014.
    [61] E. J. Baek, H. M. Joh, S. J. Kim, and T. H. Chung, "Effects of the Electrical Parameters and Gas Flow Rate on the Generation of Reactive Species in Liquids Exposed to Atmospheric Pressure Plasma Jets," Physics of Plasmas, vol. 23, p. 073515, 2016.
    [62] J. Nordberg and E. S. J. Arnér, "Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System1 1this Review Is Based on the Licentiate Thesis “Thioredoxin Reductase—Interactions with the Redox Active Compounds 1-Chloro-2,4-
    72
    Dinitrobenzene and Lipoic Acid” by Jonas Nordberg, 2001, Karolinska Institute, Stockholm, Isbn 91-631-1064-4," Free Radical Biology and Medicine, vol. 31, pp. 1287-1312, 2001.
    [63] B. Halliwell, M. V. Clement, and L. H. Long, "Hydrogen Peroxide in the Human Body," FEBS Letters, vol. 486, pp. 10-13, 2000/12/01/ 2000.
    [64] J. P. Kehrer, "The Haber–Weiss Reaction and Mechanisms of Toxicity," Toxicology, vol. 149, pp. 43-50, 2000.
    [65] S. Mohades, "Low Temperature Plasma for the Treatment of Epithelial Cancer Cells," Doctor of Philosophy (PhD) Dissertation, Electrical/Computer Engineering, Old Dominion University, 2017.
    [66] M. Arora, Cell Culture Media: A Review vol. 3, 2013.
    [67] F. J. Martín-Romero, E. M. Miguel-Lasobras, J. A. Domínguez-Arroyo, E.
    Gonzélez-Carrera, and I. S. Álvarez, "Contribution of Culture Media to Oxidative Stress and Its Effect on Human Oocytes," Reproductive BioMedicine Online, vol. 17, pp. 652-661, 2008.
    [68] M. Keidar, "Plasma for Cancer Treatment," Plasma Sources Science and Technology, vol. 24, 2015.
    [69] T. von Woedtke, S. Reuter, K. Masur, and K. D. Weltmann, "Plasmas for Medicine," Physics Reports, vol. 530, pp. 291-320, 2013/09/30/ 2013.
    [70] S. Bekeschus, A. Lin, A. Fridman, K. Wende, K.-D. Weltmann, and V. Miller, "A Comparison of Floating-Electrode Dbd and Kinpen Jet: Plasma Parameters to Achieve Similar Growth Reduction in Colon Cancer Cells under Standardized Conditions," Plasma Chemistry and Plasma Processing, vol. 38, pp. 1-12, 2018/01/01 2018.
    [71] H. R. Molavian, A. Goldman, C. J. Phipps, M. Kohandel, B. G. Wouters, S. Sengupta, and S. Sivaloganathan, "Drug-Induced Reactive Oxygen Species (Ros) Rely on Cell Membrane Properties to Exert Anticancer Effects," Scientific Reports, vol. 6, p. 27439, 06/09/online 2016.
    [72] J. S. Endre, J. H. Frances, H. Sung-Ha, H. Franziska, H. V. Nicolas, and D. S. Robert, "The Hormesis Effect of Plasma-Elevated Intracellular Ros on Hacat Cells," Journal of Physics D: Applied Physics, vol. 48, p. 495401, 2015.
    [73] H. M. Joh, J. Y. Choi, S. J. Kim, T. H. Chung, and T.-H. Kang, "Effect of Additive Oxygen Gas on Cellular Response of Lung Cancer Cells Induced by Atmospheric Pressure Helium Plasma Jet," Scientific Reports, vol. 4, p. 6638, 10/16/online 2014.
    [74] W. Ibrahim Yaseen, Study of Dc Breakdown Voltage in Low Pressure Argon and Nitrogen Gases for Several Electrode Gap vol. 20, 2017.
    [75] L. C. Crowley, B. J. Marfell, A. P. Scott, and N. J. Waterhouse, "Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry," Cold Spring Harbor Protocols, vol. 2016, pp. 953-957, 2016.
    [76] S. J. Kim, T. H. Chung, S. H. Bae, and S. H. Leem, "Induction of Apoptosis in Human Breast Cancer Cells by a Pulsed Atmospheric Pressure Plasma Jet," Applied Physics Letters, vol. 97, p. 023702, 2010.
    [77] D. Xu, B. Wang, Y. Xu, Z. Chen, Q. Cui, Y. Yang, H. Chen, and M. G. Kong, "Intracellular Ros Mediates Gas Plasma-Facilitated Cellular Transfection in 2d and 3d Cultures," Scientific Reports, vol. 6, p. 27872, 06/14/online 2016.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE