簡易檢索 / 詳目顯示

研究生: 黃福祿
Huang, Fo-Lo
論文名稱: 以多孔性鎳電極製備高效能氧化鈷電容元件
Optimization of Porosity Ni Electrode and its application for Cobalt Oxided Supercapacitors
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 75
中文關鍵詞: 氧化鈷電容器孔性鎳電極
外文關鍵詞: Cobalt Oxided Supercapacitors, Porosity Ni Electrode
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要為延續實驗室先前於ITO上造出鎳多孔材技術之應用。希望可以於金屬基材上作出同樣多孔材結構,並希望可以增加其表面積來達成具有高表面積材料,最後應用於鈷電容研究。
    於鎳基材上欲增加表面積有二種方式,一種方式是將孔洞變大,另一種是將鍍層厚度增加。利用不同電位析出,電位高孔洞小。而增加鍍液中銅濃度(CuSO4)至0.2M可以發現孔洞變大。但是析出電量會增加鍍層厚度,所增加表面積最多。
    因此增加析出電量方式,由一庫倫增加至三庫倫,可原來厚度1μm增加至3~5μm,且孔洞也變大一些。當造出具有高表面積之多孔材,接著就進行陽極沈積法沈積鈷氧化物。
    我們運用陽極沈積法於0.1M醋酸鈷溶液中沉積Co2O3於鎳多孔材上,Co2O3以薄薄一層覆蓋於鎳多孔材基材上,以循環伏安法測試其電容性值可看出具有良好電容可逆性之電流曲線,顯示電極有理想的擬電容特性與電化學可逆性,且電容值高達911F/g以上。再以循環伏安法進行充放電測試可發現電容值持續增加,當達2000cycle時電容值約增加2.38倍,即電容值高達2167F/g,且增加後還是具有良好電容可逆性。

    This study illustrates the application of porous material from Ni electrode. We prepare large surface area porous material by increasing the surface area and implement cobalt super-capacitors investigation.
    There are two kinds of methods may increase the surface from Nickel substrate. One is the increase of the pore size, and the other is the addition of deposition thickness. Electrodeposition at various potentials, the pore size is small while the potential is high. However, the pore size becomes larger while increases the copper concentration (in CuSO4) to 0.2 M. When the electrodeposition implements at three coulombs, most of the pores begin to peel off from the substrate material, it can be attribute to the larger concentrations of copper ions cause larger percentage for copper electrodeposition. Moreover, with the addition of charge from 1 to 3 comes higher than that obtained from 2ulomb, the deposition thickness changes from 1μΜ to 3 ~ 5μΜ, and the pore size becomes larger. As for larger surface porous material, we use anode deposition to electrodeposite cobalt oxide.
    We implement Co2O3 deposition by using 0.1 M cobalt acetate solution, the Co2O3 thin films cover on the surface of nickel porous material. Cyclic voltammetry experiments show that the capacitance available from the porous Ni electrode is 911F/g, which is 2.38 ti000 cycles

    目錄.............................................................................................................Ⅰ 表目錄.........................................................................................................Ⅲ 圖目錄.........................................................................................................Ⅳ 中文摘要.....................................................................................................Ⅷ Abstract .......................................................................................................Ⅸ 第1章 緒論………………………………………………….………….. 1 第2章 實驗原理與文獻回顧……….……………………….…………..6 2-1 電鍍銅鎳合金及其去合金化的原理……….……..……….……6 2-2 鈷氧化物於超高電容器中的應用……………….……….……10 第3章 實驗步驟及方法………………………………….…………….24 3-1 使用藥品………………………………………………….….…24 3-2 儀器與設備…………………………………………….….……25 3-3 實驗溶液的製備…………………………………….….………26 3-4 電化學的實驗條件方法………………………….…….………27 3-5 實驗分析項目與條件…………………………………..………29 第4章 實驗結果與討論…………………………………………..……31 4-1 鎳片前處理的製備………………………………………..………32 4-2 銅鎳合金電沈積於電極的製備……………………….….……34 4-3 多孔性鎳電極的製備………………………………….….……36 4-4 不同電位沈積銅鎳製備出多孔材對結構影響……………….37 4-5 多孔性電極應用於超高電容器之電極…………………….….52 第5章 結論………………………………………………………..……67 第6章 參考文獻……………………………………………………..…68

    1. 2000年第四屆台北國際電持研討會會刊.
    2. Conway E., Electrochemical Super capacitors, Kluwer-Plenum, New York 1999.
    3. Burke,A., Ultracapacitors:why, how, and where is the technology, Journal of Power Sources 2000,91.37-50.
    4. Conway,B.E., Transition from “supercapacity” to “battery” behavior in electrochemical energy storage, J. Electrochem. Soc., 1991,138 1539.
    5. Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M., Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. Journal of Colloid and Interface Science 2005, 284, (2), 521-526.
    6. Ghosh,S.; Dasgupta,S.; Sen, A.; Maiti, H.S., Synthesis of barium titanate nanopowder by a soft chemical process. Materials Letters 2007, 61, (2), 538-541.
    7. Puntes, V. F.; Krishnan, K. M.; Alivisatos, P., Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal epsilon-Co nanoparticles. Applied Physics Letters 2001, 78, (15), 2187-2189.
    8. Agoudjil, N.; Benkacem, T., Synthesis of porous titanium dioxide membranes. Desalination 2007, 206, (1-3), 531-537.
    9. Kremer, D. M.; Hancock, B. C., Process simulation in the pharmaceutical industry: A review of some basic physical models. Journal of Pharmaceutical Sciences 2006, 95, (3), 517-529.
    10. Ja,H.R., Dong,J.H.,Myongsoo L.,Aqueous self-assembly of aromatic rod building blocks. Chem. Commun., 2008, 1043-1054
    11. Chen,W., Wee,A.T.S., Self-assembly on silicon carbide nanomesh templates, Journal of Physics D: Applied Physics 2007,40, 6287-6299
    12. Marero, D. M.; Enguita, O.; Zubiri, J. G.; Rodriguez, A.; Narros, J.; Boerma, D. O., Exploiting the third dimension in nanofabrication technology with scanned high energy ion beams. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2006, 249, 253-256.
    13. Yang, K. Y.; Hong, S. H.; Lee, H.; Choi, J. W., Fabrication of nano-sized gold dot array using bi-layer nano imprint lithography. Eco-Materials Processing & Design Vii 2006, 510-511, 446-449.
    14. Lu, H. B.; Li, Y.; Wang, F. H., Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying. Scripta Materialia 2007, 56, (2), 165-168.
    15. Yeh, F. H.; Tai, C. C.; Huang, J. F.; Sun, I. W., Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. Journal of Physical Chemistry B 2006, 110, (11), 5215-5222.
    16. Fukumizu, T.; Kotani, F.; Yoshida, A.; Katagiri, A., Electrochemical formation of porous nickel in zinc chloride-alkali chloride melts. Journal of the Electrochemical Society 2006, 153, (9), C629-C633.
    17. Huang, J. F.; Sun, I. W., Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Advanced Functional Materials 2005, 15, (6), 989-994.
    18. Al-Kharafi, F. M.; Ateya, B. G.; Abd Allah, R. M., Selective dissolution of brass in salt water. Journal of Applied Electrochemistry 2004, 34, (1), 47-53.
    19. Katagiri, A.; Nakata, M., Preparation of a high surface area nickel electrode by alloying and dealloying in a ZnCl2-NaCl melt. Journal of the Electrochemical Society 2003, 150, (9), C585-C590.
    20. Prabaharan,S.R.S.; Vimla,R.; Zainal,J.Z., Nanostructured mesoporous carbon as electrodes for supercapacitors. Journal of Power Sources 2006 ,161, 730.
    21. Takasu,Y.; Murakami,Y., Design of oxide electrodes with large surface area .Electrochimica Acta 2000,45 , 4135.
    22. Hu,C.C.; Huang,Y.H.; Chang,K.H., Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors.Journal of Power Sources 2002,108,117.
    23. Hu,C.C.; Tsou,T.W., Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochimica Acat 2002,47, 3523.
    24. Sugimoto,W.; Iwata,H.;Yasunaga,Y., Yasushi Murakami, and Yoshio Takasu,Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage.Angewandte Chemie.-Int. Ed. 2003 42,4092-4096.
    25. Broughton,J.N.; Brett,M.J., Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochimica Acta 2005,50, 4814-4819.
    26. Djurfors,B.; Broughton,J.N.; Brett,M.J.; Ivey,D.G., Electrochemical oxidation of Mn/MnO films: formation of an electrochemical capacitor. Acta Materialia 2005,53, 957-965.
    27. Lee,H.Y.; Goodenough,J. B.,Supercapacitor Behavior with KCl Electrolyte. Journal of Solid State Chemistry 1999,144, 220-223.
    28. Takasu,Y.; Murakami,Y., Design of oxide electrodes with large surface area. Electrochimica Acta 2000,45,4135-4141.
    29. Erlebacher, J.; Sieradzki, K., Pattern formation during dealloying. Scripta Materialia 2003, 49, (10), 991-996.
    30. Erlebacher, J., An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior. Journal of the Electrochemical Society 2004, 151, (10), C614-C626.
    31. Zhou, M.; Myung, N.; Chen, X.; Rajeshwar, K., Electrochemical Deposition and Stripping of Copper, Nickel and Copper-Nickel Alloy Thin-Films at a Polycrystalline Gold Surface - a Combined Voltammetry-Coulometry-Electrochemical Quartz-Crystal Microgravimetry Study. Journal of Electroanalytical Chemistry 1995, 398, (1-2), 5-12.
    32. Sun, L.; Chien, C. L.; Searson, P. C., Fabrication of nanoporous nickel by electrochemical dealloying. Chemistry of Materials 2004, 16, (16), 3125-3129.
    33. Changa,J.K.; Hsub,S.H.; Tsai,W.T.; Sunb,I.W., A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance. Journal of Power Sources 2008,177,676-680.
    34. Chang,J.K.; Hsu,S.H.; Sun,I.W.; Tsai,W.T., Formation of Nanoporous Nickel by Selective Anodic Etching of the Nobler Copper Component from Electrodeposited Nickel-Copper Alloys. J. Phys. Chem. C 2008, 112, 1371-1376.
    35. Chen,Y.W.D.; Noufi,R.N., Electrodeposition of Nickel and Cobalt Oxides onto Platinum and Graphite Electrodes for Alkaline Water Electrolysis. Electrochemical Science and Technology 1984,131, 6,1447- 1451.
    36. Casella,I.G.; Gatta M., Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. Journal of Electroanalytical Chemistry 2002,534,31-38.
    37. Fan,Z.; Chen,J.; Cui,K.; Sun,F.; Xu,Y.; Kuang,Y., Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochimica Acta 2007,52,2959-2965.
    38. Castro,E.B.; Gervasi,C.A., Electrodeposited Ni-Co-oxide electrodes:characterization and kinetics of the oxygen evolution reaction. International Journal of Hydrogen Energy 2000,25,1163-1170.
    39. Su,L.H.; Zhang,X.G.,Effect of carbon entrapped in Co–Al double oxides on structural restacking and electrochemical performances. Journal of Power Sources 2007,172, 999-1006.
    40. Liang,Y.Y.; Bao,S.J.; Li,H.L., Nanocrystalline nickel cobalt hydroxides / ultrastable Y zeolite composite for electrochemical capacitors. J Solid State Electrochem 2007,11,571-576.
    41. Hu,C.C.; Chang,K.H.;Wang,C.C., Two-step hydrothermal synthesis of Ru–Sn oxide composites for electrochemical supercapacitors. Electrochimica Acta 2007,52,4411-4418.
    42. Yuan,C.; Zhanga,X.; Gaob,B.; Li,J., Synthesis and electrochemical capacitance of mesoporous Co(OH)2. Materials Chemistry and Physics 2007,101,148-152.
    43. Shan,Yan.; Gao,L., Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Materials Chemistry and Physics 2007,103,206-210.
    44. Liu,E.H.; Meng,X.Y.; Ding,R.; Zhou,J.C.; Tan,S.T., Potentiodynamical co-deposited manganese oxide/carbon composite for high capacitance electrochemical capacitors. Materials Letters 2007,61,3486-3489.
    45. Liang,Y.Y.; Li,H.L.; Zh,X.G., A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes. Materials Science and Engineering A 2008,473,317-322.
    46. Gupta,V.; Kusahara,T.; Toyama,H.; Gupta,S.; Miura,N., Potentiostatically deposited nanostructured a-Co(OH)2:A high performance electrode material for redox-capacitors. Electrochemistry Communications 2007,9,2315-2319.
    47. Gupta,V.; Gupta,S.; Miura,N., Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors . Journal of Power Sources 2008, 175,680–685.
    48. Zheng,J. P.; Huang,J.; Jow,T.R., The Limitations of Energy Densily for Electrochemical Capacitors. J. Electrochem. Soc. 1997,June,Vol. 144, No. 6.
    49. Long,J.W.; Swider,K.E.; Merzbacher,C.I.; Rolison,D.R., Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials. Langmuir 1999, 15, 780-785.
    50. Hu,C.C.; Huang,Y.H.,Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors. Journal of The Electrochemical Society,1999,146,7, 2465-2471.
    51. Tilak,B.V.; Chen,C.P., Materials for Electrochemical Capacitors Theoretical and Experimental Consfraints. J. Electrochem. Soc. 1996, Vol. 143, No. 11, November.3791-3799.
    52. Ramani,M.; Haran,B.S.;White,R.E.; Popov,B.N., Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors. Journal of The Electrochemical Society, 2001,148,4,A374-A380.
    53. Doubova,L.M.; Daolio,S.; Battisti,A.D., Examination of RuO2 single-crystal surfaces: charge storage mechanism in H2SO4 aqueous solution. Journal of Electroanalytical Chemistry,2002,532,25-33.
    54. Hu,C.C.; Chang,K.H., Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide. Electrochimica Acta 2000,45,2685-2696.
    55. Chang,T.Y.; Wang,X.; Evans,D.A.; Robinson,S.L.; Zheng,J.P., Tantalum oxide-ruthenium oxide hybrid(R) capacitors. Journal of Power Sources 2002,110,138-143.
    56. Fukuoka,K.; Kurahashi,M.,Effect of Si-Precipitate on the Capacitance of AC-Etching Al- Electrolytic Capacitor Cathode Foil. Sumitomo Light Metal Technical Reports 1990, vol.31, No. 4, pp. 10-17.
    57. Casella,I.G., Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)–tartrate complexes. Journal of Electroanalytical Chemistry 2002,520,119-125.
    58. CASTRO,E.B.; GERVASIz,C.A.; VILCHE,J.R.,Oxygen evolution on electrodeposited cobalt oxides. Jornal of Applied Electroctrochemistry 1998,28,835-841.
    59. Nkeng,P.; Poillerat,G.; Koenig,J. F.; Charfier,P., Characterization of Spinel-Type Cobalt and Nickel Oxide Thin Films by X-Ray Near Grazing Diffraction, Transmission and Reflectance Spectroscopies, and Cyclic Voltammetry. J. Electrochem. Soc., 1995,Vol.142, No. 6, June.1777-1783.
    60. Barbero,C.;Planes,G.A.;Miras,M.C.,Redox coupled ion exchange in cobalt oxide films.Electrochmistry Communications 2001,3,113-116.
    61. Casella,I.G.; Guascito,M.R., Electrochemical preparation of a composite gold–cobalt electrode and its electrocatalytic activity in alkaline medium. Electrochimica Acta 1999,45,1113-1120.
    62. Casella,I.G.;Guascito,M.R.,Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. Journal of Electroanalytical Chemistry 1999,476,54-63.
    63. Casella,I.G., Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)–tartrate complexes. Journal of Electroanalytical Chemistry 2002,520,119-125.
    64. Kim, G. M.; Kovalgin, A.; Holleman, J.; Brugger, J., Replication molds having nanometer-scale shape control fabricated by means of oxidation and etching. Journal of Nanoscience and Nanotechnology 2002, 2, (1), 55-59.
    65. Carcenac, F.; Malaquin, L.; Vieu, C., Fabrication of multiple nano-electrodes for molecular addressing using high-resolution electron beam lithography and their replication using soft imprint lithography. Microelectronic Engineering 2002, 61-2, 657-663.
    66. Akedo, J.; Lebedev, M., Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2002, 41, (11B), 6980-6984.
    67. Hino, T.; Serigano, T.; Yamamoto, H.; Takeuchi, H.; Niwa, T.; Kawashima, Y., Particle design of Wogon extract dry powder for inhalation aerosols with granulation method. International Journal of Pharmaceutics 1998, 168, (1), 59-68.
    68. Huang, J. F.; Sun, I. W., Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Advanced Functional Materials 2005, 15, (6), 989-994.
    69. Puntes, V. F.; Krishnan, K. M.; Alivisatos, P., Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal epsilon-Co nanoparticles. Applied Physics Letters 2001, 78, (15), 2187-2189.
    70. Xu, W.; Akins, D. L., Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice. Materials Letters 2004, 58, (21), 2623-2626.
    71. Pourbaix,M.;ATLAS OF ELECTROCHEMICAL EQUILBRIA IN AQUEOUS SOLUTIONS. Library of Congress Catalog Card 1974,NO.65-11670,323-325.

    下載圖示 校內:2011-09-02公開
    校外:2011-09-02公開
    QR CODE