| 研究生: |
杜建毅 Du, Chien-Yi |
|---|---|
| 論文名稱: |
一級熱電製冷片在考慮湯姆生效應下之實驗與數值分析 Experimental Investigation and Numerical Analysis for One-stage Thermoelectric Cooler under Thomson Effect |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 熱電製冷片 、西貝克效應 、湯姆生效應 、熱電效應 |
| 外文關鍵詞: | thermoelectric, Seebeck effect, Thomson effect |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過實驗與數值分析方法,討論一級熱電製冷片在考慮湯姆生效應下,內部溫度分布以及湯姆生熱分布之情況。實驗指定三種熱端溫度323.2K(50℃)、333.2K(60℃)與343.2K(70℃),在冷端接受5.5W、12.3W 與22.0W 三種熱負載下,結果發現冷熱溫差在高電流、低熱負載或高熱端溫度下較大;性能係數在低電流、高熱負載或低熱端溫度時有較大值。
利用二階LSM 模型(2nd-order LSM)、常數西貝克模型(CSM)以及一階LLS 模型(1st-order LLS)三種模型來描述西貝克係數隨溫度變化的趨勢。其中,二階LSM 西貝克模型與一階LLS 模型分別視湯姆生係數為溫度函式與常數,而常數西貝克模型表示不考慮湯姆生效應之影響。比較實驗與模擬之冷端溫度與性能係數的結果,LSM模擬之誤差最小,此即表示考慮湯姆生熱(Thomson heat)之影響下,其推測冷端溫度之精確度將可以提高。由熱電製冷片的內部湯姆生熱分布顯示,在供應電流增加下,冷端之湯姆生熱會減低生成熱的影響;熱端之湯姆生熱會在大於一臨界電流值後,與焦耳熱一同增加內部的生成熱,造成熱端溫度梯度急劇變化。
This study conducts experimental investigation and numerical analysis for one-stage thermoelectric cooler(TEC) under Thomson effect. Three hot side temperatures and three cold side heat loads are assigned to study the distributions of temperature and Thomson heat inside TEC. Results show that higher current, higher hot side temperature, or lower heat load can increase the temperature difference between the cold and hot sides. Oppositely, lower current, lower hot side temperature, or higher heat load can increase the COP.
Three Seebeck coefficient models, second-order linear Seebeck model(LSM), constant Seebeck model(CSM), and log-linear Seebeck model(LLS) are applied to numerically study the Thomson effect on TEC. Thomson coefficient is a function of temperature for LSM and a constant value for LLS. However, CSM neglects the Thomson effect. Results show that LSM provides the best overall performance. This proves that Thomson effect should be considered in TEC thermal modeling. The distributions of temperature and Thomson heat inside TEC are further analyzed by the aforementioned best model. Results show that with increasing current, Thomson heat decreases the amount of heat generation at the cold side. However, the trend reverses at the hot side after passing a critical current and causes the rapid change in temperature gradient.
1. Seebeck, T.J., “Magnetische polarisation der metalle und erzedurch temperatur-differenz. abhand deut,” Akad. Wiss. Berlin, pp. 265-373, 1822.
2. Peltier, J.C., “Nouvelles experiences sur la caloriecete des courans electriques.” Ann. Chem., LVI, pp. 371-387, 1834.
3. Thomson, W., “On a mechanical theory of thermoelectric currents,” Proc.Roy.Soc.Edinburgh, pp. 91-98, 1851.
4. Altenkirch, E., Physikalische Zeitschrift, 12, pp. 920-924, 1911.
5. Lars Onsager, “Reciprocal relations in irrerversible processes. I.,” Physical Review, Vol. 37, pp. 405-426, 1931.
6. Herbert B. Callen, “The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects,” Physical Review, Vol. 73, pp. 1349-1358 , 1948.
7. Charles A. Domenicali, “Irreversible thermodynamics of thermoelectric effects in inhomogeneous, anisotropic media,” Physical Review, Vol. 92, pp. 877-881 , 1953.
8. Abram Fedorovich Ioffe, Semiconductor thermoelements, and thermoelectric cooling, London :Infosearch, ltd., 1957.
9. H. J. Goldsmid, “Principles of thermoelectric devices,” British Journal of Applied Physics Vol. 11, pp. 209-217, 1960.
10. M. H. Norwood, “A comparison of theory and experiment for a thermoelectric cooler,” Journal of Applied Physics, Vol. 32, pp. 2559-2563, 1961.
11. Jincan Chen and Zijun Yan, “The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator,” Journal of Applied Physics. Vol. 79 (11), pp. 8823-8828, 1996.
12. M. Yamanashi, “A new approach to optimum design in thermoelectric cooling systems,” Journal of Applied Physics. Vol. 80 (9) , pp.5494-5502, 1996.
13. F. Vo¨lklein , Gao Min , D.M. Rowe, “Modelling of a microelectromechanical thermoelectric cooler,” Sensors and Actuators Vol. 75, pp.95-101, 1999.
14. Gao Min, D.M. Rowe, “Cooling performance of integrated thermoelectric microcooler,” Solid-State Electronics Vol. 43, pp. 923-929, 1999.
15. D. J. Yao, C. J. Kim, and G. Chen, “, Desigh of thin-film thermoelectric microcoolers,” HTD-Vol. 366-2, Proceedings of the ASME Heat Transfer Division, Vol. 2, pp. 345-351, 2000.
16. H. T. Chua, K. C. Ng, X. C. Xuan, C. Yap, and Jeffrey M. Gordon, “Temperature-entropy formulation of thermoelectric thermodynamic cycles,” Physical Review E, Vol. 65, pp. 056111, 2002.
17. X. C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “A general model for studying effects of interface layers on thermoelectric devices performance,” International Journal of Heat and Mass Transfer Vol. 45, pp. 5159-5170, 2002.
18. X. C. Xuan, “Analyses of the performance and polar characteristics of two-stage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 414-420, 2002.
19. X. C. Xuan, “On the optimal design of multistage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 625-629, 2002.
20. X. C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “Optimization of two-stage thermoelectric coolers with two design configurations,” Energy Conversion and Management, Vol. 43, pp. 2041-2052, 2002.
21. X. C. Xuan, “Optimum design of a thermoelectric device,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 17, pp. 114-119, 2002.
22. X. C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers,” Cryogenics, Vol. 42, pp. 273-278, 2002.
23. X. C. Xuan, K.C. Ng, C. Yap, H.T. Chua, “Temperature-entropy diagrams for multi-stage thermoelectric coolers,” Institute of Physics Publishing, Semiconductor Science Technology, Vol. 18, pp. 273-277, 2003.
24. Ronggui Yang and Gang Chen, “Multistage thermoelectric microcoolers,” Journal of Applied Physics, Vol. 95, Number 12, pp. 8226-8232, 2004.
25. Jen-Hau Cheng, Chun-Kai Liu, Yu-Lin Chao, Ra-Min Tain , “Cooling performance of silicon-based thermoelectric device on high power LED,” International Conference on Thermoelectrics, ICT, Proceedings, 2005. IEEE, Piscataway, NJ, USA, pp. 53-56, 2005.
26. Marc Hodes, “On one-dimensional analysis of thermoelectric modules (TEMs),” IEEE Transactions on Components and Packaging Technologies , Vol. 28, NO. 2, pp. 218-229, 2005.
27. Mei-Jiau Huang , Ruey-Hor Yen, An-Bang Wang, “The influence of the Thomson effect on the performance of a thermoelectric cooler,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 413-418, 2005.
28. Yaakov Kraftmakher, “Simple experiments with a thermoelectric module,” Institute of Physics Publishing European Journal of Physics, Vol. 26, pp. 959-967, 2005.
29. Anutosh Chakraborty, Kim Choon Ng, “Thermodynamic formulation of temperature-entropy diagram for the transient operation of a pulsed thermoelectric cooler,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 1845-1850, 2006.
30. L.N. Vikhor, L.I. Anatychuk, “Theoretical evaluation of maximum temperature difference in segmented thermoelectric coolers,” Applied Thermal Engineering, Vol. 26, pp. 1692-1696, 2006.
31. Kong Hoon Lee, Ook Joong Kim ,“Analysis on the cooling performance of the thermoelectric micro-cooler,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 1982-1992, 2007.
32. L.M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, Gao Min, D. M. Rowe and J. H. Correia, “Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies,” IOP Publishing Journal of Micromechanics and Microengineering, Vol. 17, pp. S168-S173, 2007.