簡易檢索 / 詳目顯示

研究生: 邱琮傑
Chiu, Tsung-Chieh
論文名稱: 以分子模版材料製備之電極進行 對膽紅素感測之探討
Investigation on the detection of bilirubin by the electrode prepared from molecularly imprinting
指導教授: 許梅娟
Syu, Mei-Jyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 77
中文關鍵詞: 光接枝聚合電流法分子模版高分子膽紅素
外文關鍵詞: amperometric method, bilirubin, molecularly imprinting
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
      經由先前實驗室已發展之poly(methacrylic acid-co-ethyglycol- dimethylacrylate) (Poly(MAA-co-EGDMA)) 高分子模印 bilirubin,且由實驗結果已確認高分子對 bilirubin有特異性吸附。
    由於人體每天都有衰老紅細胞的出現,因此經由分解衰老紅細胞中的血紅蛋白會產生約250~350 mg的膽紅素 (bilirubin),且經由肝臟的代謝,人體血清中總膽紅素的正常含量約為0.1~1.0 mg/dl,若是含量倍數般的增高,則可能是肝臟出現問題,可能的清況為體內大量紅血球壞死、黃疸病、或是肝炎或肝硬化。
    本實驗藉由模印膽紅素之Poly(MAA-co-EGDMA) 的特異性吸附,來研究電極感測膽紅素的可行性。另外使用氧化鋁版為基板,其輕薄質堅的特性,替電極本身帶來了相當的可靠性。
      經由紅外線光譜儀、分光光度計,可以確定膽紅素於聚合過程中,不會因為聚合條件而氧化,並以其原本的構形存在於高分子薄膜中。又以SEM觀察MIP電極,可初步判定使用光接枝聚合法,可將膜厚控制約在15 nm。
      於電化學方面,製作的MIP電極與NIP電極相較,MIP電極的感應電流大小為NIP電極的三倍,表示電極經由此方法修飾後,具有模印的效果。並於濃度範圍0.2~1 mg/dl可以獲得良好的線性關係。且MIP電極的感測靈敏度約為0.14 mA/mM.cm2。另外在偵測血清中膽紅素的部份,實驗結果顯示MIP電極在膽紅素與血清的環境下之感測已確定是可行的。

    Abstract
      Molecularly imprinting was the most popular research in the past few years. By using this method, we could prepare the polymer which can behave like the antibody. Thus the molecularly imprinted polymer also has another name called artificial antibody, which means it can rebind the template specifically.
      In our past research, we had found that the poly(methacrylic acid-co-ethyglycol- dimethylacrylate) particle imprinted by bilirubin could bind bilirubin specifically. In this work, we tried to prepare the molecularly imprinted polymer thin film fabricated electrode for the detection of bilirubin by using the electrochemical method.
      Bilirubin is the metabolism product of haem moiety of haemoglobin. In healthy people, the normal concentration of total bilirubin is about 0.2~1.2 mg/dl. High concentration of bilirubin in blood may cause jaundice.
      In this work, the response current of MIP electrode was 3.2 times high than the NIP (non-imprinted polymer) electrode because of the imprinting effect. And the sensitivity of MIP electrode toward bilirubin was about 0.14 mA/mM.cm2. It also had good linear correlation when the electrode was applied in the detection of bilirubin within the concentration of 1 mg/dl. After that, bilirubin was detected in the presence of FBS (fetal bovin serum). The response current between bilirubin in serum and only serum could be measured distinguishably.

    目錄 中文摘要...................................i Abstract...................................ii 致謝.......................................iii 目錄.......................................v 表目錄.....................................viii 圖目錄.....................................ix 第一章 緒論................................1 1-1分子模版高分子..........................1 1-1-1分子模版的優點........................1 1-1-2單體與模版分子間的鍵結模式............2 1-1-3組成及其影響..........................3 1-1-4分子模版近期的應用....................6 1-2分子模版電化學式感測器..................9 1-2-1各類型的感測器........................10 1-2-2分子模版高分子薄膜於電化學應用上的感測機制11 1-2-3 分子模版高分子薄膜各種修飾方法.......12 1-3膽紅素..................................12 1-3-1膽紅素的形成..........................12 1-3-2膽紅素的結構..........................13 1-3-3膽紅素的代謝..........................13 1-3-4膽紅素之於黃疸........................15 1-3-5 膽紅素的感測方法.....................15 1-4膽紅素的電化學反應......................16 1-4-1直接偵測膽紅素........................16 1-4-2 間接偵測膽紅素.......................17 1-5實驗動機................................18 第二章 實驗方法與材料.....................19 2-1膽紅素的測定............................19 2-1-1以呈色法測定膽紅素濃度................19 2-2膽紅素分子模版高分子薄膜的製備..........21 2-2-1感電面積處理..........................21 2-2-2硫醇處理金電極........................21 2-2-3金電極表面絕緣及表面起始劑處理........21 2-2-4 Poly(MAA-EGDMA)分子模版高分子修飾電極表面22 2-2-5膽紅素分子模版高分子薄膜的脫附........22 2-3聚合前膽紅素性質測試....................22 2-3-1利用傅立葉轉換紅外線光譜儀............22 2-3-2利用紫外光分光光度計進行穩定度測試....22 2-4聚合後膽紅素性質測定....................23 2-4-1傅立葉轉換紅外線光譜儀................23 2-4-2紫外光分光光度計......................23 2-5電化學實驗..............................23 2-5-1循環伏安法............................23 2-5-2 I-E 曲線.............................23 2-5-3利用紫外光分光光度計追蹤膽紅素之電化學反應26 2-5-4 I-t 曲線.............................26 2-5-5不同氧化還原介質的差異................26 2-5-6感測時間差異..........................26 2-5-7電極重覆使用測試......................28 2-5-8混合血清測試..........................28 2-6實驗藥品................................29 2-7實驗儀器................................30 第三章 結果與討論..........................31 3-1膽紅素的物性探討........................31 3-1-1 FT-IR測試............................31 3-1-2紫外光分光光度計測試..................32 3-2膽紅素模版高分子薄膜的製備..............36 3-3膽紅素模版高分子薄膜的性質測定..........37 3-3-1表面粗糙度測試........................37 3-3-2 SEM觀察其表面形態....................37 3-3-3萃取液測試............................43 3-4電化學測試..............................46 3-4-1濺鍍時間對於電流訊號的影響............46 3-4-2電流的穩定性測試......................46 3-4-3膽紅素的氧化還原電位..................46 3-4-4 膽紅素分子模版電極的極化曲線.........47 3-4-5膽紅素濃度的測試......................47 3-4-6 MIP電極與NIP電極對膽紅素濃度變化之比較48 3-4-7探討氧化還原介質對電極感應的影響......49 3-4-8不同平衡時間的差異....................49 3-4-9電極的重覆使用性......................50 3-5血清的測試..............................68 3-5-1膽紅素分子模版電極測試................68 第四章 結論................................71 參考文獻...................................73

    參考文獻
    [1]K. Haupt, Imprinted Polymers: The Next Generation, Anal. Chem., A, 376-383, 2003

    [2]J. Svenson, and I. A. Nicholls, On the thermal and chemical stability of molecularly imprinted polymers, Anal. Chim. Acta, vol. 435, 19-24, 2001

    [3]A. G. Mayes, and K. Mosbach, Molecularly Imprinted Polymers: useful materials for analytical chemistry ?, Trends in analytical chemistry, vol. 16, no. 6, 321-332, 1997

    [4]M. J. Whitcombe, M. E. Rodriguez, P. Villar, and E. N. Vulfson, A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol, J. Am. Chem. Soc., 117, 7105-7111, 1995

    [5]A. Molinelli, R. Weiss, and B. Mizaikoff, Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine, J. Agric. Food. Chem., 50, 1804-1808, 2002

    [6]K. Lettau, A. Warsinke, A. Laschewsky, K. Mosbach, and E. Yilmaz, An Esterolytic Imprinted Polymer Prepared via a Silica-Supported Transition State Analogue, Chem. Mater., 16, 2745-2749, 2004

    [7]M. J. Syu, J. H. Deng, and Y. M. Nian, Towards bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of bilirubin, Anal. Chim. Acta, 504, 167-177, 2004

    [8]M. K.P. Leung, B. K.W. Chiu, and M. H.W. Lam, Molecular sensing of 3-chloro-1,2-propanediol by molecular imprinting, Anal. Chim. Acta, 491, 15-25, 2003

    [9]O. Br?ggemann, K. Haupt, L. Ye, E. Yilmaz, and K. Mosbach, Review-New configurations and applications of molecularly imprinted polymers, J. Chrom. A, 889, 15-24, 2000

    [10]K. Karim, F. Breton, R. Rouillon, E. V. Piletska, A. Guerreiro, I. Chianella, and S. A. Piletsky, How to find effective functional monomers for effective molecularly imprinted polymers ?, Adva. Drug Deli. Revi., 57, 1795-1808, 2005

    [11]P. A.G. Cormack, and A. Z. Elorza, Review-Molecularly imprinted polymers: synthesis and characterization, J. Chrom. B, 804, 173-182, 2004

    [12]C. H. Lim, C. D. Ki, T. H. Kim, and J. Y. Chang, Use of an Aromatic Polyimide as a Non-Cross-Linked Molecular Imprinting Material, Macromolecules, 37, 6-8, 2004

    [13]D. A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Adva. Drug Deli., 57, 1779-1794, 2005

    [14]G. P. Gonz?lez, P. F. Hernando, and J. S. D. Alegr?a, A morphological study of molecularly imprinted polymers using the scanning electro microscope, Anal. Chim. Acta, 557, 179-183, 2006

    [15]L. I. Andersson, Review-Molecular imprinted: developments and applications in the analytical chemistry field, J. Chrom. B, 745, 3-13, 2000

    [16]G. Wulff, Enzyme-like Catalysis by Molecularly Imprinted Polymers, Chem. Revi., vol. 102, no. 1, 1-27, 2002

    [17]E. Toorisaka, K. Uezu, M. Goto, and S. Furusaki, A molecularly imprinted polymer that shows enzymatic activity, Biochemical Engineering J., 14, 85-91, 2003

    [18]I. A. Nicholls, L. I. Andersson, and K. Mosbach, Recognition and enantioselection of drugs and biochemicals using molecularly imprinted polymer technology, TIBTECH FEBRUARY, 13, 47-51, 1995

    [19]C. F. V. Nostrum, Molecular imprinting: A new tool for drug innovation, Drug Discovery Today: Technologies, vol. 2, no. 1, 119-124, 2005

    [20]K. Haupt, and K. Mosbach, Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors, Chem. Rev., 100, 2495-2504, 2000

    [21]N. Lavignac, C. J. Allender, and K. R. Brain, 4-(3-Aminopropylene)-7-nitrobenzofurazan: a new polymerisable monomer for use in homogeneous molecularly imprinted sorbent fluoroassays, Tetrahedron Letters, 45, 3625-3627, 2004

    [22]C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. McHale, and W. Hayes, Molecular-Imprinted, Polymer-Coated Quartz Crystal Microbalances for the Detection of Terpenes, Anal. Chem., 73, 4225-4228, 73

    [23]M.C. B. L?pez, M.J. L. Casta??n, A.J. M. Ordieres, and P. T. Blanco, Electrochemical sensors based on molecularly imprinted polymers, Trends in Analytical Chemistry, 23, 36-48, 2004

    [24]K. C. Ho, W. M. Yeh, T. S. Tung, and J. Y. Liao, Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted particles prepared by precipitation polymerization, Anal. Chim. Acta, 542, 90-96, 2005

    [25]T. P. Delaney, V. M. Mirsky, and O. S. Wolfbeis, Capacitive Creatinine Sensor Based on a Photografted Molecularly Imprinted Polymer, Electroanalysis, 14, 221-224, 2002

    [26]Z. Cheng, E. Wang, and X. Yang, Capacitive detection of glucose using molecularly imprinted polymers, Biosensors & Bioelectronics, 16, 179-185, 2001

    [27]T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, E. A. Slinchenko, L. M. Sergeeva, and A. V. El’skaya, Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection, Anal. Chim. Acta, 392, 105-111, 1999

    [28]S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, and I. Karube, Atrazine sensing by molecularly imprinted membranes, Biosensors & Bioelectronics, 10, 959-964, 1995

    [29]M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake, and I. Willner, Tailored Chemosensors for Chloroaromatic Acids Using Molecular Imprinted TiO2 Thin Films on Ion-Sensitive Field-Effect Transistors, Anal. Chem., 73, 720-723

    [30]P. Andrea, S. Miroslav, S. Silvia, and M. Stanislav, A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry, Sensors and Actuators B, 76, 286-294, 2001

    [31]M.C. Blanco-L?pez, M.J. Lobo-Casta??n, A.J. Miranda-Ordieres, and P. Tu??n-Blanco, Voltammetric sensor for valillylmandelic acid based on molecularly imprinted polymer-modified electrodes, Biosensors and Bioelectronics, 18, 353-362, 2003

    [32]R. Shoji, T. Takeuchi, and I. Kubo, Atrazine Sensor Based on Molecularly Imprinted Polymer-Modified Gold Electrode, Anal. Chem., 75, 4882-4886, 2003

    [33]S. A. Piletsky, and A. P.F. Turner, Electrochemical Sensors Based on Molecularly Imprinted Polymers, Electroanalysis, 14, 317-323, 2004

    [34]Y. Yoshimi, R. Ohdaira, C. Iiyama, and K. Sakai, Sens. Actuators B, 73, 49, 2001

    [35]C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. McHale, and W. Hayes, Anal. Chem., 73, 4225, 2001

    [36]T. Panasyuk-Delaney, V. M. Mirsky, and O. S. Wolfbeis, Electroanalysis, 14, 221, 2003

    [37]X. Wang, J. R. Chowdhury, and N. R. Chowdhury, Bilirubin metabolism: Applied physiology, Current Paediatrics, 70-74, 2006

    [38]F. M. Eichelbaum, W. Forth, U. Meyer, and P. A. van Zwieten, Biliary Excretion of Drugs and other Chemicals, Progress in Pharmacology and Clinical Pharmacology, vol. 8/4, Gustav Fischer Verlag, Stuttgart, New York, 1991

    [39]G. Alagona, C. Ghio, and S. Monti, Continuum solvent effects on various isomers of bilirbuin, Phys. Chem. Chem. Phys., 2, 4884-4890, 2000

    [40]J. D. Ostrow, Bile Pigments and Jaundice-Molecular, Metabolic, and Medical Aspects, Liver: Normal Function and Disease, vol. 4, Marcel Dekker, New York and Basel, 1986

    [41]上海交通大學醫學院, 醫學生物化學, 科學出版社, 2004

    [42]J. J. Lauff, and M. E. Kasper, Separation of bilirubin species in serum and bile by high performance reversed-phase liquid chromatography, J Chromat, 226, 391-637, 1982

    [43]F. Moussa, G. Kanoute, C. Herrenknecht. P. Levillain, and F. Trivin, Electrochemical Oxidation of Bilirubin and Biliverdin in Dimethyl Sulfoxide, Anal. Chem., 60, 1179-1185, 1988

    [44]J. Klemm, M. I. Prodromidis, and M. I. Karayannis, An Enzymic Method for the Determination of Bilirubin Using an Oxygen Electrode, Electroanalysis, 12, no. 4, 292-295, 2000

    [45]J. Wang, and M. Ozsoz, A polishable amperometric biosensor for bilirubin, Electroanalysis, 2, 647-650, 1990

    [46]B. Shoham, Y. Migron, A. Riklin, I. Willner, and B. Tartakovsky, A bilirubin biosensor based on a multilayer network enzyme electrode, Biosensors & Bioelectronics, 10, 341-352, 1995

    [47]B. R?nby, W. T. Yang, and O. Tretinnikov, Surface photografting of polymer fibers, films and sheets, Nucl. Instr. And Meth. In Phys. Res. B 151, 301-305, 1999

    下載圖示 校內:2009-07-28公開
    校外:2009-07-28公開
    QR CODE