| 研究生: |
邱琮傑 Chiu, Tsung-Chieh |
|---|---|
| 論文名稱: |
以分子模版材料製備之電極進行
對膽紅素感測之探討 Investigation on the detection of bilirubin by the electrode prepared from molecularly imprinting |
| 指導教授: |
許梅娟
Syu, Mei-Jyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 光接枝聚合 、電流法 、分子模版高分子 、膽紅素 |
| 外文關鍵詞: | amperometric method, bilirubin, molecularly imprinting |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
經由先前實驗室已發展之poly(methacrylic acid-co-ethyglycol- dimethylacrylate) (Poly(MAA-co-EGDMA)) 高分子模印 bilirubin,且由實驗結果已確認高分子對 bilirubin有特異性吸附。
由於人體每天都有衰老紅細胞的出現,因此經由分解衰老紅細胞中的血紅蛋白會產生約250~350 mg的膽紅素 (bilirubin),且經由肝臟的代謝,人體血清中總膽紅素的正常含量約為0.1~1.0 mg/dl,若是含量倍數般的增高,則可能是肝臟出現問題,可能的清況為體內大量紅血球壞死、黃疸病、或是肝炎或肝硬化。
本實驗藉由模印膽紅素之Poly(MAA-co-EGDMA) 的特異性吸附,來研究電極感測膽紅素的可行性。另外使用氧化鋁版為基板,其輕薄質堅的特性,替電極本身帶來了相當的可靠性。
經由紅外線光譜儀、分光光度計,可以確定膽紅素於聚合過程中,不會因為聚合條件而氧化,並以其原本的構形存在於高分子薄膜中。又以SEM觀察MIP電極,可初步判定使用光接枝聚合法,可將膜厚控制約在15 nm。
於電化學方面,製作的MIP電極與NIP電極相較,MIP電極的感應電流大小為NIP電極的三倍,表示電極經由此方法修飾後,具有模印的效果。並於濃度範圍0.2~1 mg/dl可以獲得良好的線性關係。且MIP電極的感測靈敏度約為0.14 mA/mM.cm2。另外在偵測血清中膽紅素的部份,實驗結果顯示MIP電極在膽紅素與血清的環境下之感測已確定是可行的。
Abstract
Molecularly imprinting was the most popular research in the past few years. By using this method, we could prepare the polymer which can behave like the antibody. Thus the molecularly imprinted polymer also has another name called artificial antibody, which means it can rebind the template specifically.
In our past research, we had found that the poly(methacrylic acid-co-ethyglycol- dimethylacrylate) particle imprinted by bilirubin could bind bilirubin specifically. In this work, we tried to prepare the molecularly imprinted polymer thin film fabricated electrode for the detection of bilirubin by using the electrochemical method.
Bilirubin is the metabolism product of haem moiety of haemoglobin. In healthy people, the normal concentration of total bilirubin is about 0.2~1.2 mg/dl. High concentration of bilirubin in blood may cause jaundice.
In this work, the response current of MIP electrode was 3.2 times high than the NIP (non-imprinted polymer) electrode because of the imprinting effect. And the sensitivity of MIP electrode toward bilirubin was about 0.14 mA/mM.cm2. It also had good linear correlation when the electrode was applied in the detection of bilirubin within the concentration of 1 mg/dl. After that, bilirubin was detected in the presence of FBS (fetal bovin serum). The response current between bilirubin in serum and only serum could be measured distinguishably.
參考文獻
[1]K. Haupt, Imprinted Polymers: The Next Generation, Anal. Chem., A, 376-383, 2003
[2]J. Svenson, and I. A. Nicholls, On the thermal and chemical stability of molecularly imprinted polymers, Anal. Chim. Acta, vol. 435, 19-24, 2001
[3]A. G. Mayes, and K. Mosbach, Molecularly Imprinted Polymers: useful materials for analytical chemistry ?, Trends in analytical chemistry, vol. 16, no. 6, 321-332, 1997
[4]M. J. Whitcombe, M. E. Rodriguez, P. Villar, and E. N. Vulfson, A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol, J. Am. Chem. Soc., 117, 7105-7111, 1995
[5]A. Molinelli, R. Weiss, and B. Mizaikoff, Advanced Solid Phase Extraction Using Molecularly Imprinted Polymers for the Determination of Quercetin in Red Wine, J. Agric. Food. Chem., 50, 1804-1808, 2002
[6]K. Lettau, A. Warsinke, A. Laschewsky, K. Mosbach, and E. Yilmaz, An Esterolytic Imprinted Polymer Prepared via a Silica-Supported Transition State Analogue, Chem. Mater., 16, 2745-2749, 2004
[7]M. J. Syu, J. H. Deng, and Y. M. Nian, Towards bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of bilirubin, Anal. Chim. Acta, 504, 167-177, 2004
[8]M. K.P. Leung, B. K.W. Chiu, and M. H.W. Lam, Molecular sensing of 3-chloro-1,2-propanediol by molecular imprinting, Anal. Chim. Acta, 491, 15-25, 2003
[9]O. Br?ggemann, K. Haupt, L. Ye, E. Yilmaz, and K. Mosbach, Review-New configurations and applications of molecularly imprinted polymers, J. Chrom. A, 889, 15-24, 2000
[10]K. Karim, F. Breton, R. Rouillon, E. V. Piletska, A. Guerreiro, I. Chianella, and S. A. Piletsky, How to find effective functional monomers for effective molecularly imprinted polymers ?, Adva. Drug Deli. Revi., 57, 1795-1808, 2005
[11]P. A.G. Cormack, and A. Z. Elorza, Review-Molecularly imprinted polymers: synthesis and characterization, J. Chrom. B, 804, 173-182, 2004
[12]C. H. Lim, C. D. Ki, T. H. Kim, and J. Y. Chang, Use of an Aromatic Polyimide as a Non-Cross-Linked Molecular Imprinting Material, Macromolecules, 37, 6-8, 2004
[13]D. A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Adva. Drug Deli., 57, 1779-1794, 2005
[14]G. P. Gonz?lez, P. F. Hernando, and J. S. D. Alegr?a, A morphological study of molecularly imprinted polymers using the scanning electro microscope, Anal. Chim. Acta, 557, 179-183, 2006
[15]L. I. Andersson, Review-Molecular imprinted: developments and applications in the analytical chemistry field, J. Chrom. B, 745, 3-13, 2000
[16]G. Wulff, Enzyme-like Catalysis by Molecularly Imprinted Polymers, Chem. Revi., vol. 102, no. 1, 1-27, 2002
[17]E. Toorisaka, K. Uezu, M. Goto, and S. Furusaki, A molecularly imprinted polymer that shows enzymatic activity, Biochemical Engineering J., 14, 85-91, 2003
[18]I. A. Nicholls, L. I. Andersson, and K. Mosbach, Recognition and enantioselection of drugs and biochemicals using molecularly imprinted polymer technology, TIBTECH FEBRUARY, 13, 47-51, 1995
[19]C. F. V. Nostrum, Molecular imprinting: A new tool for drug innovation, Drug Discovery Today: Technologies, vol. 2, no. 1, 119-124, 2005
[20]K. Haupt, and K. Mosbach, Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors, Chem. Rev., 100, 2495-2504, 2000
[21]N. Lavignac, C. J. Allender, and K. R. Brain, 4-(3-Aminopropylene)-7-nitrobenzofurazan: a new polymerisable monomer for use in homogeneous molecularly imprinted sorbent fluoroassays, Tetrahedron Letters, 45, 3625-3627, 2004
[22]C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. McHale, and W. Hayes, Molecular-Imprinted, Polymer-Coated Quartz Crystal Microbalances for the Detection of Terpenes, Anal. Chem., 73, 4225-4228, 73
[23]M.C. B. L?pez, M.J. L. Casta??n, A.J. M. Ordieres, and P. T. Blanco, Electrochemical sensors based on molecularly imprinted polymers, Trends in Analytical Chemistry, 23, 36-48, 2004
[24]K. C. Ho, W. M. Yeh, T. S. Tung, and J. Y. Liao, Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted particles prepared by precipitation polymerization, Anal. Chim. Acta, 542, 90-96, 2005
[25]T. P. Delaney, V. M. Mirsky, and O. S. Wolfbeis, Capacitive Creatinine Sensor Based on a Photografted Molecularly Imprinted Polymer, Electroanalysis, 14, 221-224, 2002
[26]Z. Cheng, E. Wang, and X. Yang, Capacitive detection of glucose using molecularly imprinted polymers, Biosensors & Bioelectronics, 16, 179-185, 2001
[27]T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, E. A. Slinchenko, L. M. Sergeeva, and A. V. El’skaya, Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection, Anal. Chim. Acta, 392, 105-111, 1999
[28]S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, and I. Karube, Atrazine sensing by molecularly imprinted membranes, Biosensors & Bioelectronics, 10, 959-964, 1995
[29]M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake, and I. Willner, Tailored Chemosensors for Chloroaromatic Acids Using Molecular Imprinted TiO2 Thin Films on Ion-Sensitive Field-Effect Transistors, Anal. Chem., 73, 720-723
[30]P. Andrea, S. Miroslav, S. Silvia, and M. Stanislav, A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry, Sensors and Actuators B, 76, 286-294, 2001
[31]M.C. Blanco-L?pez, M.J. Lobo-Casta??n, A.J. Miranda-Ordieres, and P. Tu??n-Blanco, Voltammetric sensor for valillylmandelic acid based on molecularly imprinted polymer-modified electrodes, Biosensors and Bioelectronics, 18, 353-362, 2003
[32]R. Shoji, T. Takeuchi, and I. Kubo, Atrazine Sensor Based on Molecularly Imprinted Polymer-Modified Gold Electrode, Anal. Chem., 75, 4882-4886, 2003
[33]S. A. Piletsky, and A. P.F. Turner, Electrochemical Sensors Based on Molecularly Imprinted Polymers, Electroanalysis, 14, 317-323, 2004
[34]Y. Yoshimi, R. Ohdaira, C. Iiyama, and K. Sakai, Sens. Actuators B, 73, 49, 2001
[35]C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. McHale, and W. Hayes, Anal. Chem., 73, 4225, 2001
[36]T. Panasyuk-Delaney, V. M. Mirsky, and O. S. Wolfbeis, Electroanalysis, 14, 221, 2003
[37]X. Wang, J. R. Chowdhury, and N. R. Chowdhury, Bilirubin metabolism: Applied physiology, Current Paediatrics, 70-74, 2006
[38]F. M. Eichelbaum, W. Forth, U. Meyer, and P. A. van Zwieten, Biliary Excretion of Drugs and other Chemicals, Progress in Pharmacology and Clinical Pharmacology, vol. 8/4, Gustav Fischer Verlag, Stuttgart, New York, 1991
[39]G. Alagona, C. Ghio, and S. Monti, Continuum solvent effects on various isomers of bilirbuin, Phys. Chem. Chem. Phys., 2, 4884-4890, 2000
[40]J. D. Ostrow, Bile Pigments and Jaundice-Molecular, Metabolic, and Medical Aspects, Liver: Normal Function and Disease, vol. 4, Marcel Dekker, New York and Basel, 1986
[41]上海交通大學醫學院, 醫學生物化學, 科學出版社, 2004
[42]J. J. Lauff, and M. E. Kasper, Separation of bilirubin species in serum and bile by high performance reversed-phase liquid chromatography, J Chromat, 226, 391-637, 1982
[43]F. Moussa, G. Kanoute, C. Herrenknecht. P. Levillain, and F. Trivin, Electrochemical Oxidation of Bilirubin and Biliverdin in Dimethyl Sulfoxide, Anal. Chem., 60, 1179-1185, 1988
[44]J. Klemm, M. I. Prodromidis, and M. I. Karayannis, An Enzymic Method for the Determination of Bilirubin Using an Oxygen Electrode, Electroanalysis, 12, no. 4, 292-295, 2000
[45]J. Wang, and M. Ozsoz, A polishable amperometric biosensor for bilirubin, Electroanalysis, 2, 647-650, 1990
[46]B. Shoham, Y. Migron, A. Riklin, I. Willner, and B. Tartakovsky, A bilirubin biosensor based on a multilayer network enzyme electrode, Biosensors & Bioelectronics, 10, 341-352, 1995
[47]B. R?nby, W. T. Yang, and O. Tretinnikov, Surface photografting of polymer fibers, films and sheets, Nucl. Instr. And Meth. In Phys. Res. B 151, 301-305, 1999