| 研究生: |
羅硯 Royan, Tsulusun Ar |
|---|---|
| 論文名稱: |
濺鍍成長氧化鎂鋅薄膜之微結構及光學性質 Structural and Optical properties of MgZnO thin film grown by sputtering |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 氧化鋅鎂 、濺鍍 、光學性質 、Fabry-Perot 干涉 、侷域化現象 、非晶質氧化鎂 |
| 外文關鍵詞: | MgxZn1-xO, sputtering, optical properties, Fabry-Perot interfere, localization effect and amorphous MgO |
| 相關次數: | 點閱:98 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗藉由磁控濺鍍法沉積氧化鋅鎂合金薄膜,主要改變的製程參數有沉積溫度以及鎂的含量. 並藉由X光繞射,掃描式電子顯微鏡,X光能量散布圖譜,原子力顯微鏡,穿透式電子顯微鏡,光激發光圖譜以及穿透率光譜等方法量測薄膜的結構以及光學性質.
氧化鋅鎂合金薄膜於低溫沉積時具有較佳的光穿透性質,較短波長的(藍移)發光特性以及較高的鎂含量. 侷域化(區域)的效應造成試片具有特殊的光學性質. 例如由於氧化鋅鎂多層薄膜的反射引發Fabry-Perot干涉效應. 區域化的激子(exciton)以及伴隨而來的吸收係數能隙尾部延展(tail)現象,都會因為製程溫度的不同而有所變化.
當藉由改變氧化鎂以及氧化鋅濺鍍源的相對功率來提高氧化鋅鎂合金薄膜中的鎂合量時, 可以觀柴到非常特殊的薄膜微結構(microstructure). 此薄膜結構主要由底部的少量鎂摻雜氧化鋅(ZnO:Mg)薄膜, 較上方的非晶氧化鋅鎂顆粒埋在氧化鋅母相中的薄膜, 以及最上方的非晶質高鎂含量氧化鋅鎂顆粒所組成. 這種雜質析出的現象主要可以歸因於製程環境的選擇以及晶體成長時對於雜質添加所造成的晶格變形容忍度以及雜質的擴散等等因素, 因此氧化鋅鎂材料在成分及結構上可以具有幾近單晶的純氧化鋅與氧化鎂, 或者是介於兩者之間的非晶質氧化鋅鎂. 此外, 氧化鋅鎂薄膜在溫度解析的光激發光圖譜中, 激子的再結合發光能量上具有S形的發光波長特性, 這主要來自於合金薄膜中的激子侷域化(localization)所致.
MgxZn1-xO alloy deposited onto silicon wafer using sputtering. Deposition parameter varied in this process, temperature and magnesium content. Structural and optical properties studied by several characterization including, x-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, transmission electron microscopy, photoluminescence, x-ray photoelectron microscopy and transmittance spectrum.
MgxZn1-xO alloy deposit at lower temperature have better transmittance spectrum, blue shifted emission and higher magnesium content. localization effect demonstrated in all sample lead to unique optical properties. prominent Fabry-Perot interfere rings due to multiple layer substrate reflection demonstrated in MgxZn1-xO film. localized exciton and following by enhance band tail absorption coefficient reveled in MgxZn1-xO film growth at various deposition temperature.
MgxZn1-xO film deposited with highest power ratio between MgO and ZnO demonstrated unique microstructure. The microstructure consist of bottom layer ZnO and ZnO at amorphous MgO matrix amorphous, some Mg-rich MgxZn1-xO amorphous particles also could be observed on these two layers. Due high density nucleation lead to phase separation between single crystal ZnO and cubic MgO or amorphous MgO. MgxZn1-xO film demonstrated a S-shaped photoluminescence temperature dependence of exciton recombination energy. This phenomenon is related to exciton localized in alloy-induced potential fluctuations
1 Bagnall, D. M. et al. Optically pumped lasing of ZnO at room temperature. Applied Physics Letters 70, 2230-2232 (1997).
2 Reynolds, D. C., Look, D. C. & Jogai, B. Optically pumped ultraviolet lasing from ZnO. Solid State Communications 99, 873-875 (1996).
3 Tsukazaki, A. et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4, 42-46 (2005).
4 Yamada, A., Sang, B. & Konagai, M. Atomic layer deposition of ZnO transparent conducting oxides. Applied Surface Science 112, 216-222 (1997).
5 Lim, J.-H. et al. UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering. Advanced Materials 18, 2720-2724 (2006).
6 Yamamoto, T., Shiosaki, T. & Kawabata, A. Characterization of ZnO piezoelectric films prepared by rf planar-magnetron sputtering. Journal of Applied Physics 51, 3113-3120 (1980).
7 Tang, Z. K. et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters 72, 3270-3272 (1998).
8 Du, X. et al. Controlled Growth of High-Quality ZnO-Based Films and Fabrication of Visible-Blind and Solar-Blind Ultra-Violet Detectors. Advanced Materials 21, 4625-4630 (2009).
9 Liang, S. et al. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth 225, 110-113 (2001).
10 SEGNIT, E. R. & HOLLAND, A. E. The System MgO-ZnO-SiO<sub>2</sub>. Journal of the American Ceramic Society 48, 409-413 (1965).
11 Ohtomo, A. et al. Mg[sub x]Zn[sub 1 - x]O as a II--VI widegap semiconductor alloy. Applied Physics Letters 72, 2466-2468 (1998).
12 Tsuyoshi Takagi, H. T., Shizuo Fujita and Shigeo Fujita. Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1-xO Alloys (xsimeq0.5) and Their Application to Solar-Blind Region Photodetectors. Jpn. J. Appl. Phys 42, L401-L403, doi:10.1143/JJAP.42.L401 (2003).
13 Minemoto, T., Negami, T., Nishiwaki, S., Takakura, H. & Hamakawa, Y. Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering. Thin Solid Films 372, 173-176 (2000).
14 Park, W. I., Yi, G.-C. & Jang, H. M. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn[sub 1 - x]Mg[sub x]O(0 <= x <= 0.49) thin films. Applied Physics Letters 79, 2022-2024 (2001).
15 Chen, N. B. & et al. Temperature-dependent optical properties of hexagonal and cubic Mg x Zn 1− x O thin-film alloys. Journal of Physics: Condensed Matter 16, 2973 (2004).
16 Kim, Y.-I., Page, K., Limarga, A. M., Clarke, D. R. & Seshadri, R. Evolution of local structures in polycrystalline Zn1-x Mgx O ( <= x <= 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis. Physical Review B 76, 115204 (2007).
17 Kim, Y.-I., Page, K. & Seshadri, R. Synchrotron x-ray study of polycrystalline wurtzite Zn[sub 1 - x]Mg[sub x]O (0 <= x <= 0.15): Evolution of crystal structure and polarization. Applied Physics Letters 90, 101904-101903 (2007).
18 Sanati, M., Hart, G. L. W. & Zunger, A. Ordering tendencies in octahedral MgO-ZnO alloys. Physical Review B 68, 155210 (2003).
19 Wassner, T. A. et al. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. Journal of Applied Physics 105, 023505-023506 (2009).
20 Ozgur, U. et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, 041301-041103 (2005).
21 Harrison, S. E. Conductivity and Hall Effect of ZnO at Low Temperatures. Physical Review 93, 52 (1954).
22 Hutson, A. R. Hall Effect Studies of Doped Zinc Oxide Single Crystals. Physical Review 108, 222 (1957).
23 Lee, E.-C., Kim, Y. S., Jin, Y. G. & Chang, K. J. Compensation mechanism for N acceptors in ZnO. Physical Review B 64, 085120 (2001).
24 Oba, F., Togo, A., Tanaka, I., Paier, J. & Kresse, G. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Physical Review B 77, 245202 (2008).
25 Anderson, J. & Chris, G. V. d. W. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics 72, 126501 (2009).
26 Taylor, A. L., Filipovich, G. & Lindeberg, G. K. Electron paramagnetic resonance associated with Zn vacancies in neutron-irradiated ZnO. Solid State Communications 8, 1359-1361 (1970).
27 Cuscó, R. et al. Temperature dependence of Raman scattering in ZnO. Physical Review B 75, 165202 (2007).
28 Janotti, A. & Van de Walle, C. G. Oxygen vacancies in ZnO. Applied Physics Letters 87, 122102-122103 (2005).
29 Tuomisto, F., Ranki, V., Saarinen, K. & Look, D. C. Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO. Physical Review Letters 91, 205502 (2003).
30 Janotti, A. & Van de Walle, C. G. Native point defects in ZnO. Physical Review B 76, 165202 (2007).
31 Preston, A. R. H. et al. Band structure of ZnO from resonant x-ray emission spectroscopy. Physical Review B 78, 155114 (2008).
32 Fritsch, D., Schmidt, H. & Grundmann, M. Pseudopotential band structures of rocksalt MgO, ZnO, and Mg[sub 1 - x]Zn[sub x]O. Applied Physics Letters 88, 134104-134103 (2006).
33 Bloom, S. & Ortenburger, I. Pseudopotential Band Structure of ZnO. physica status solidi (b) 58, 561-566 (1973).
34 Goano, M., Bertazzi, F., Penna, M. & Bellotti, E. Electronic structure of wurtzite ZnO: Nonlocal pseudopotential and ab initio calculations. Journal of Applied Physics 102, 083709-083711 (2007).
35 Kobayashi, M. et al. Experimental observation of bulk band dispersions in the oxide semiconductor ZnO using soft x-ray angle-resolved photoemission spectroscopy. Journal of Applied Physics 105, 122403-122404 (2009).
36 Birman, J. L. Polarization of Fluorescence in CdS and ZnS Single Crystals. Physical Review Letters 2, 157 (1959).
37 Thomas, D. G. The exciton spectrum of zinc oxide. Journal of Physics and Chemistry of Solids 15, 86-96 (1960).
38 Park, Y. S., Litton, C. W., Collins, T. C. & Reynolds, D. C. Exciton Spectrum of ZnO. Physical Review 143, 512 (1966).
39 Hopfield, J. J. & Thomas, D. G. Polariton Absorption Lines. Physical Review Letters 15, 22 (1965).
40 Muth, J. F., Kolbas, R. M., Sharma, A. K., Oktyabrsky, S. & Narayan, J. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. Journal of Applied Physics 85, 7884-7887 (1999).
41 Reynolds, D. C. et al. Neutral-donor–bound-exciton complexes in ZnO crystals. Physical Review B 57, 12151 (1998).
42 Alves, H. et al. Optical investigations on excitons bound to impurities and dislocations in ZnO. Optical Materials 23, 33-37 (2003).
43 Thonke, K. et al. Donor-acceptor pair transitions in ZnO substrate material. Physica B: Condensed Matter 308-310, 945-948 (2001).
44 Dingle, R. Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide. Physical Review Letters 23, 579 (1969).
45 Ohtomo, A., Shiroki, R., Ohkubo, I., Koinuma, H. & Kawasaki, M. Thermal stability of supersaturated Mg[sub x]Zn[sub 1 - x]O alloy films and Mg[sub x]Zn[sub 1 - x]O/ZnO heterointerfaces. Applied Physics Letters 75, 4088-4090 (1999).
46 Choopun, S. et al. Realization of band gap above 5.0 eV in metastable cubic-phase Mg[sub x]Zn[sub 1 - x]O alloy films. Applied Physics Letters 80, 1529-1531 (2002).
47 Bendersky, L. A. et al. Microstructural study of epitaxial Zn[sub 1 - x]Mg[sub x]O composition spreads. Journal of Applied Physics 98, 083526-083526 (2005).
48 Sawada, H., Wang, R. & Sleight, A. W. An Electron Density Residual Study of Zinc Oxide. Journal of Solid State Chemistry 122, 148-150 (1996).
49 Srikant, V. & Clarke, D. R. On the optical band gap of zinc oxide. Journal of Applied Physics 83, 5447-5451 (1998).
50 Ohtomo, A. et al. Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Applied Physics Letters 77, 2204-2206 (2000).
51 Coli, G. & Bajaj, K. K. Excitonic transitions in ZnO/MgZnO quantum well heterostructures. Applied Physics Letters 78, 2861-2863 (2001).
52 Ohtomo, A. et al. Structure and optical properties of ZnO/Mg[sub 0.2]Zn[sub 0.8]O superlattices. Applied Physics Letters 75, 980-982 (1999).
53 Tsukazaki, A. et al. Quantum Hall Effect in Polar Oxide Heterostructures. Science 315, 1388-1391, doi:10.1126/science.1137430 (2007).
54 Sigmund, P. Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets. Physical Review 184, 383 (1969).
55 J.Tauc. Amorphous and Liquid Semiconductors
(Plenum Book, 1974).
56 Davis, E. A. & Mott, N. F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine 22, 903 - 922 (1970).
57 Bagnall, D. M. et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Applied Physics Letters 73, 1038-1040 (1998).
58 CAPASSO, F. Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices. Science 235, 172-176, doi:10.1126/science.235.4785.172 (1987).
59 Sanjeev, K. & et al. Structural and optical properties of magnetron sputtered Mg x Zn 1− x O thin films. Journal of Physics: Condensed Matter 18, 3343 (2006).
60 Sharma, A. K. et al. Optical and structural properties of epitaxial Mg[sub x]Zn[sub 1 - x]O alloys. Applied Physics Letters 75, 3327-3329 (1999).
61 Hwang, D.-K., Jeong, M.-C. & Myoung, J.-M. Effects of deposition temperature on the properties of Zn1-xMgxO thin films. Applied Surface Science 225, 217-222 (2004).
62 Li, H., Zhang, Y., Pan, X., Wang, T. & Xie, E. The effects of thermal annealing on properties of MgxZn1-xO films by sputtering. Journal of Alloys and Compounds 472, 208-210 (2009).
63 Li, H. et al. The influence of ambient conditions on properties of MgxZn1-xO films by sputtering. Vacuum 82, 459-462 (2008).
64 Kim, Y. Y. et al. High-temperature growth and in-situ annealing of MgZnO thin films by RF sputtering. Thin Solid Films 516, 5602-5606 (2008).
65 Prathap, P. & et al. Substrate temperature dependent physical properties of sprayed Zn0.76Mg0.24O films. Journal of Materials Science Materials in Electronics (2009).
66 Liu, C. Y., Xu, H. Y., Wang, L., Li, X. H. & Liu, Y. C. Pulsed laser deposition of high Mg-content MgZnO films: Effects of substrate temperature and oxygen pressure. Journal of Applied Physics 106, 073518-073514 (2009).
67 Huso, J. et al. Optical transitions and multiphonon Raman scattering of Cu doped ZnO and MgZnO ceramics. Applied Physics Letters 94, 061919-061913 (2009).
68 Chen, J. & Shen, W. Z. Long-wavelength optical phonon properties of ternary MgZnO thin films. Applied Physics Letters 83, 2154-2156 (2003).
69 Jeong, S.-H., Kim, B.-S. & Lee, B.-T. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient. Applied Physics Letters 82, 2625-2627 (2003).
70 Islam, M. N., Ghosh, T. B., Chopra, K. L. & Acharya, H. N. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280, 20-25 (1996).
71 Kunat, M., Girol, S. G., Burghaus, U. & Wöll, C. The Interaction of Water with the Oxygen-Terminated, Polar Surface of ZnO. The Journal of Physical Chemistry B 107, 14350-14356, doi:10.1021/jp030675z (2003).
72 Yao, H. B., Li, Y. & Wee, A. T. S. An XPS investigation of the oxidation/corrosion of melt-spun Mg. Applied Surface Science 158, 112-119 (2000).
73 Ghijsen, J., Namba, H., Thiry, P. A., Pireaux, J. J. & Caudano, P. Adsorption of oxygen on the magnesium (0001) surface studied by XPS. Applications of Surface Science 8, 397-411 (1981).
74 Jeurgens, L. P. H., Vinodh, M. S. & Mittemeijer, E. J. Initial oxide-film growth on Mg-based MgAl alloys at room temperature. Acta Materialia 56, 4621-4634 (2008).
75 Kang, H. S. et al. Optical property and Stokes' shift of Zn[sub 1 - x]Cd[sub x]O thin films depending on Cd content. Journal of Applied Physics 99, 066113-066113 (2006).
76 Wu, C., Lu, Y., Shen, D. & Fan, X. Effect of Mg content on the structural and optical properties of MgxZn1−xO alloys. Chinese Science Bulletin 55, 90-93 (2010).
77 Yu, S. F., Yuen, C., Lau, S. P. & Lee, H. W. Zinc oxide thin-film random lasers on silicon substrate. Applied Physics Letters 84, 3244-3246 (2004).
78 Zhou, H. P., Xu, M. & Shen, W. Z. Anomalous temperature dependence of optical properties of cubic MgZnO: Effect of carrier localization. Physica B: Condensed Matter 403, 3585-3588 (2008).
79 Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Physical Review 92, 1324 (1953).
80 Dimova-Malinovska, D., Nichev, H. & Angelov, O. Correlation between the stress in ZnO thin films and the Urbach band tail width. physica status solidi (c) 5, 3353-3357 (2008).
81 Tan, S. T. et al. Zinc oxide quantum dots embedded films by metal organic chemical vapor deposition. Journal of Crystal Growth 290, 518-522 (2006).
82 Lu, J., Ye, Z., Wang, L., Huang, J. & Zhao, B. Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD. Materials Science in Semiconductor Processing 5, 491-496 (2002).
83 Djurišić, A. B. & et al. Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007).
84 Djurisic, A. B. et al. Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Applied Physics Letters 88, 103107-103103 (2006).
85 Carcia, P. F., McLean, R. S., Reilly, M. H. & Nunes, J. G. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters 82, 1117-1119 (2003).
86 Janotti, A. & Van de Walle, C. G. Hydrogen multicentre bonds. Nat Mater 6, 44-47, doi:http://www.nature.com/nmat/journal/v6/n1/suppinfo/nmat1795_S1.html (2007).
87 Meyer, B. K. et al. Bound exciton and donor-acceptor pair recombinations in ZnO. physica status solidi (b) 241, 231-260 (2004).
88 Sun, H. D. et al. Phonon replicas in ZnO/ZnMgO multiquantum wells. Journal of Applied Physics 91, 6457-6460 (2002).
89 Raghavan, S., Hajra, J. P., Iyengar, G. N. K. & Abraham, K. P. Terminal solid solubilities at 900-1000°C in the magnesium oxide-zinc oxide system measured using a magnesium fluoride solid-electrolyte galvanic cell. Thermochimica Acta 189, 151-158 (1991).
90 Chen, M. et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science 158, 134-140 (2000).
91 Kim, D. C. et al. Selective Crystalline Seed Layer Assisted Growth of Vertically Aligned MgZnO Nanowires and Their High-Brightness Field-Emission Behavior. Crystal Growth & Design 9, 4308-4314, doi:10.1021/cg900018p (2009).
92 Zimmermann, R. Theory of exciton linewidth in II-VI semiconductor mixed crystals. Journal of Crystal Growth 101, 346-349 (1990).
93 Ohtomo, A. et al. Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser. Materials Science and Engineering B 56, 263-266 (1998).
94 Zeng, H. et al. Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation. Applied Physics Letters 88, 171910-171913 (2006).
95 Cao, B., Cai, W. & Zeng, H. Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Applied Physics Letters 88, 161101-161103 (2006).
96 Heitsch, S. et al. Luminescence and surface properties of Mg[sub x]Zn[sub 1 - x]O thin films grown by pulsed laser deposition. Journal of Applied Physics 101, 083521-083526 (2007).