| 研究生: |
毛品程 Mao, Pin-Cheng |
|---|---|
| 論文名稱: |
人類TIAM2S+小膠質細胞及其衍生外泌體的分子特徵 Molecular characteristics of human TIAM2S+ microglia and it's derived exosomes |
| 指導教授: |
朱俊憲
Chu, Chun-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | TIAM2S 、小膠質細胞 、外泌體 、阿爾茨海默病 、單細胞 、蛋白質組學 |
| 外文關鍵詞: | TIAM2S, Microglia, Exosomes, Alzheimer's disease, Single-cell, Proteomics |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TIAM Rac1 相關鳥嘌呤核苷酸交換因子 2 (TIAM Rac1 associated GEF 2 ) 是屬於 TIAM 家族,其mRNA有兩個亞型,分別為長片段 (~5.9 kb,NM_012454.3;TIAM2L) 和短片段 (~3.3 kb,NM_001010927.2;TIAM2S)的同工型(isoform)。 在中樞神經系統 (Central Nervous System, CNS) 中,TIAM2S 蛋白可見於神經元細胞(Neuron)和小膠質細胞(Microglia)(大腦的主要免疫細胞)中。依著有無表達TIAM2S2蛋白質,小膠質細胞可被區分為TIAM2S陰性(TIAM2S-negative)與陽性(TIAM2S-positive)兩大細胞群。此TIAM2S陽性小膠質細胞具有免疫啟動的特性,在內毒素(Endotoxin)的刺激下,會增加發炎強度以及更促進神經細胞受損。我們的初步數據顯示人類TIAM2S陽性(TIAM2S+)小膠質細胞在正常老年人大腦中.的比例約為10%。有趣的是,阿茲海默症 (Alzheimer's disease, AD) 患者大腦中,TIAM2S陽性小膠質細胞比例會顯著增加至50%加。然而TIAM2S陽性小膠質細胞如何參與阿茲海默症的發生仍不清楚。另一方面,TIAM2S陽性小膠質細胞能否透過其所分泌之外泌體(exosome)來促進免疫啟動以及誘發神經退化也是不清楚的。因此本研究試圖透過單細胞基因組學(single cell RNA-sequencing)與蛋白組學(Proteomics)來探討TIAM2S陽性小膠質細胞及其分泌之外泌體的分子特徵。第一部分的實驗中,我們分別從野生型(Wild type, WT)和TIAM2S-轉殖基因(TIAM2S-TG)小鼠中,取得其胚胎14天的大腦,進行單細胞組學的分析,共可得九個大腦細胞群。並透過小膠質細胞所表達特定之基因(Trem2, Cx3cr1, C1qa, and P2ry12),我們可得野生型(TIAM2S陰性)與基因轉殖型(TIAM2S陽性)之小膠質細胞進行一連串生物資訊分析,例如: 單一樣本基因集富集分析(single sample gene set enrichment analysis, ssGSEA)。透過分析穩定小膠質細胞(homeostatic or resting microglia: Csf1r, Ccr5, and Cd33)以及疾病相關小膠質細胞(disease-associated microglia: Lyz2, Lpl and Grn)的特定基因標記,我們發現到TIAM2S陰性與陽性小膠質細胞並無差異。然而典型的骨髓標記基因(the canonical myeloid markers: C1qa, and Hexb)則在陽性小膠質細胞有著較低的表現量。另外,與調控突觸重塑(synapse remodeling)的相關基因ADAM10、巨噬細胞異質性(macrophages heterogeneity)的相關基因ZEB2和阿茲海默症的相關基因 LAMP2,其表現量上有顯著的差異。單一樣本基因集富集分析亦顯示出陽性小膠質細胞參與在發炎免疫反應、神經細胞修剪、吞噬能力以及神經退化上有著顯著的相關性。第二部分的實驗中,我們使用蛋白質組學(isobaric tags for relative and absolute quantitation, iTRAQ)來分析從初代培養TIAM2S陰性與陽性小膠質細胞培養液中所分離的外泌體。此小膠質細胞之外泌體共1475個蛋白質,其中有包括:外泌體標記蛋白(CD9、CD81)和小膠質細胞標記蛋白(CD68 和 Iba-1)。TIAM2S陰性小膠質細胞相比, TIAM2S陽性小膠質細胞的外泌體發現到49個表現量有顯著差異的蛋白質。進一步使用基因本體分析(Gene ontology)、蛋白質-蛋白質相互作用(Protein-protein interaction)、KEGG 通路富集分析(Kyoto Encyclopedia of Genes and Genomes)的分析,結果顯示這些外泌體之顯著差異蛋白與免疫激活介導的神經元死亡以及神經退行性疾病具有相關性。綜合上述,我們的數據除了闡明TIAM2S陽性小膠質細胞的分子特徵,亦暗示其所分泌之外泌體可能參與在其所誘發之過激免疫反應以及導致神經退化相關疾病。
TIAM Rac1 associated GEF 2 (TIAM2) is a member of the TIAM family. Its mRNA has two isoforms: a long form (~5.9 kb, NM_012454.3; TIAM2L) and a short form (~3.3 kb, NM_001010927.2; TIAM2S). In the Central Nervous System (CNS), TIAM2S protein is found in neurons and microglia, the main immune cells of the brain. Depending on the expression of TIAM2S protein, microglia can be divided into two groups: TIAM2S-negative and TIAM2S-positive. TIAM2S-positive microglial cells exhibit characteristics of immune activation. Under the stimulation of endotoxin, they intensify inflammation and promote nerve cell damage. Preliminary data shows that in the normal aged brain, the proportion of TIAM2S-positive (TIAM2S+) microglia is about 10%. Interestingly, in the brains of Alzheimer's disease (AD) patients, the proportion of TIAM2S+ microglia significantly increase to over 50%. However, the exact role of TIAM2S-positive microglia in the pathogenesis of Alzheimer's disease remains unclear. Additionally, it is unknown whether TIAM2S-positive microglia can initiate immune responses and induce neurodegeneration through the exosomes they secrete. Therefore, this study aims to explore the molecular characteristics of TIAM2S-positive microglia and their secreted exosomes using single-cell RNA-sequencing and proteomics. In the first part of the experiment, brain tissue from wild type (WT) and TIAM2S-transgenic (TIAM2S-TG) mice was obtained from 14-day-old embryos. Single-cell omics analysis was performed, resulting in the identification of nine brain cell clusters. Microglia, characterized by the expression of specific genes such as Trem2, Cx3cr1, C1qa, and P2ry12, were further analyzed to distinguish wild-type (TIAM2S-negative) and transgenic (TIAM2S-positive) microglia. Various biological information analyses, including single-sample gene set enrichment analysis (ssGSEA), were conducted. Analysis of specific gene markers associated with stable microglia (homeostatic or resting microglia: Csf1r, Ccr5, and Cd33) and disease-associated microglia (Lyz2, Lpl, and Grn) revealed no differences between TIAM2S-negative and positive microglia. However, positive microglia exhibited lower expression levels of canonical myeloid markers (C1qa and Hexb). Significant differences were also observed in the expression of ADAM10 (a gene related to synapse remodeling), ZEB2 (a gene related to macrophage heterogeneity), and LAMP2 (a gene related to Alzheimer's disease). Single-sample gene set enrichment analysis indicated that positive microglial involvement was significantly correlated with inflammatory immune responses, neuronal pruning, phagocytosis, and neurodegeneration. In the second part of the experiment, exosomes were isolated from the culture medium of primary cultured TIAM2S-negative and positive microglial cells, and their proteomics profiles were analyzed using isobaric tags for relative and absolute quantitation (iTRAQ), a novel proteomics tool. The exosomes of microglia contained 1475 proteins, including exosome marker proteins (CD9, CD81) and microglia marker proteins (CD68 and Iba-1). A comparison between TIAM2S-negative and TIAM2S-positive microglia revealed 49 proteins with significantly different expression levels in their exosomes. Further analysis using Gene Ontology, protein-protein interaction, and KEGG pathway enrichment analysis (Kyoto Encyclopedia of Genes and Genomes) indicated that these differentially expressed exosome proteins were associated with immune activation-mediated neuronal death, which is relevant to neurodegenerative diseases. Based on the above findings, the data not only elucidate the molecular characteristics of TIAM2S-positive microglia but also suggest that the exosomes secreted by these cells may contribute to excessive immune responses and neurodegeneration-related diseases.
Achim, K., Pettit, J. B., Saraiva, L. R., Gavriouchkina, D., Larsson, T., Arendt, D., & Marioni, J. C. (2015). High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol, 33(5), 503-509. https://doi.org/10.1038/nbt.3209
Aguzzi, A., Barres, B. A., & Bennett, M. L. (2013). Microglia: Scapegoat, Saboteur, or Something Else? Science, 339(6116), 156-161. https://doi.org/10.1126/science.1227901
Baek, M., Yoo, E., Choi, H. I., An, G. Y., Chai, J. C., Lee, Y. S., Jung, K. H., & Chai, Y. G. (2021). The BET inhibitor attenuates the inflammatory response and cell migration in human microglial HMC3 cell line. Scientific Reports, 11(1), 8828. https://doi.org/10.1038/s41598-021-87828-1
Basso, M., & Bonetto, V. (2016). Extracellular Vesicles and a Novel Form of Communication in the Brain. Front Neurosci, 10, 127. https://doi.org/10.3389/fnins.2016.00127
Brandler, W. M., Antaki, D., Gujral, M., Noor, A., Rosanio, G., Chapman, T. R., Barrera, D. J., Lin, G. N., Malhotra, D., Watts, A. C., Wong, L. C., Estabillo, J. A., Gadomski, T. E., Hong, O., Fajardo, K. V., Bhandari, A., Owen, R., Baughn, M., Yuan, J., . . . Sebat, J. (2016). Frequency and Complexity of De Novo Structural Mutation in Autism. Am J Hum Genet, 98(4), 667-679. https://doi.org/10.1016/j.ajhg.2016.02.018
Butovsky, O., Jedrychowski, M. P., Moore, C. S., Cialic, R., Lanser, A. J., Gabriely, G., Koeglsperger, T., Dake, B., Wu, P. M., Doykan, C. E., Fanek, Z., Liu, L., Chen, Z., Rothstein, J. D., Ransohoff, R. M., Gygi, S. P., Antel, J. P., & Weiner, H. L. (2014). Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nature Neuroscience, 17(1), 131-143. https://doi.org/10.1038/nn.3599
Butovsky, O., & Weiner, H. L. (2018). Microglial signatures and their role in health and disease. Nature Reviews Neuroscience, 19(10), 622-635. https://doi.org/10.1038/s41583-018-0057-5
Cadiz, M. P., Jensen, T. D., Sens, J. P., Zhu, K., Song, W. M., Zhang, B., Ebbert, M., Chang, R., & Fryer, J. D. (2022). Culture shock: microglial heterogeneity, activation, and disrupted single-cell microglial networks in vitro. Mol Neurodegener, 17(1), 26. https://doi.org/10.1186/s13024-022-00531-1
Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., & Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int, 78(9), 838-848. https://doi.org/10.1038/ki.2010.278
Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D. M., Hill, A. J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F. J., Trapnell, C., & Shendure, J. (2019). The single-cell transcriptional landscape of mammalian organogenesis. Nature, 566(7745), 496-502. https://doi.org/10.1038/s41586-019-0969-x
Chalmin, F., Ladoire, S., Mignot, G., Vincent, J., Bruchard, M., Remy-Martin, J. P., Boireau, W., Rouleau, A., Simon, B., Lanneau, D., De Thonel, A., Multhoff, G., Hamman, A., Martin, F., Chauffert, B., Solary, E., Zitvogel, L., Garrido, C., Ryffel, B., . . . Ghiringhelli, F. (2010). Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest, 120(2), 457-471. https://doi.org/10.1172/jci40483
Chan, Y. L., Lai, W. C., Chen, J. S., Tseng, J. T., Chuang, P. C., Jou, J., Lee, C. T., & Sun, H. S. (2020). TIAM2S Mediates Serotonin Homeostasis and Provokes a Pro-Inflammatory Immune Microenvironment Permissive for Colorectal Tumorigenesis. Cancers (Basel), 12(7). https://doi.org/10.3390/cancers12071844
Chen, J. S., Su, I. J., Leu, Y. W., Young, K. C., & Sun, H. S. (2012). Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer. Int J Cancer, 130(6), 1302-1313. https://doi.org/10.1002/ijc.26117
Chen, S. H., Oyarzabal, E. A., & Hong, J. S. (2013). Preparation of rodent primary cultures for neuron-glia, mixed glia, enriched microglia, and reconstituted cultures with microglia. Methods Mol Biol, 1041, 231-240. https://doi.org/10.1007/978-1-62703-520-0_21
Chen, Y., & Colonna, M. (2021). Microglia in Alzheimer's disease at single-cell level. Are there common patterns in humans and mice? J Exp Med, 218(9). https://doi.org/10.1084/jem.20202717
Chiu, C. Y., Leng, S., Martin, K. A., Kim, E., Gorman, S., & Duhl, D. M. (1999). Cloning and characterization of T-cell lymphoma invasion and metastasis 2 (TIAM2), a novel guanine nucleotide exchange factor related to TIAM1. Genomics, 61(1), 66-73. https://doi.org/10.1006/geno.1999.5936
Chu, C. H., Chen, J. S., Chuang, P. C., Su, C. H., Chan, Y. L., Yang, Y. J., Chiang, Y. T., Su, Y. Y., Gean, P. W., & Sun, H. S. (2020). TIAM2S as a novel regulator for serotonin level enhances brain plasticity and locomotion behavior. Faseb j, 34(2), 3267-3288. https://doi.org/10.1096/fj.201901323R
Chu, C. H., Wang, S., Li, C. L., Chen, S. H., Hu, C. F., Chung, Y. L., Chen, S. L., Wang, Q., Lu, R. B., Gao, H. M., & Hong, J. S. (2016). Neurons and astroglia govern microglial endotoxin tolerance through macrophage colony-stimulating factor receptor-mediated ERK1/2 signals. Brain Behav Immun, 55, 260-272. https://doi.org/10.1016/j.bbi.2016.04.015
Cohn, W., Melnik, M., Huang, C., Teter, B., Chandra, S., Zhu, C., McIntire, L. B., John, V., Gylys, K. H., & Bilousova, T. (2021). Multi-Omics Analysis of Microglial Extracellular Vesicles From Human Alzheimer's Disease Brain Tissue Reveals Disease-Associated Signatures. Front Pharmacol, 12, 766082. https://doi.org/10.3389/fphar.2021.766082
Colonna, M., & Butovsky, O. (2017). Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol, 35, 441-468. https://doi.org/10.1146/annurev-immunol-051116-052358
Daneman, R., & Prat, A. (2015). The blood-brain barrier. Cold Spring Harb Perspect Biol, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412
Dello Russo, C., Cappoli, N., Coletta, I., Mezzogori, D., Paciello, F., Pozzoli, G., Navarra, P., & Battaglia, A. (2018). The human microglial HMC3 cell line: where do we stand? A systematic literature review. Journal of Neuroinflammation, 15(1), 259. https://doi.org/10.1186/s12974-018-1288-0
Dinkins, M. B., Dasgupta, S., Wang, G., Zhu, G., & Bieberich, E. (2014). Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease. Neurobiology of Aging, 35(8), 1792-1800. https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2014.02.012
Figuera-Losada, M., Rojas, C., & Slusher, B. S. (2014). Inhibition of microglia activation as a phenotypic assay in early drug discovery. J Biomol Screen, 19(1), 17-31. https://doi.org/10.1177/1087057113499406
Fonseca, M. I., Chu, S.-H., Hernandez, M. X., Fang, M. J., Modarresi, L., Selvan, P., MacGregor, G. R., & Tenner, A. J. (2017). Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. Journal of Neuroinflammation, 14(1), 48. https://doi.org/10.1186/s12974-017-0814-9
Fröhlich, D., Kuo, W. P., Frühbeis, C., Sun, J. J., Zehendner, C. M., Luhmann, H. J., Pinto, S., Toedling, J., Trotter, J., & Krämer-Albers, E. M. (2014). Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci, 369(1652). https://doi.org/10.1098/rstb.2013.0510
Franco, R., & Fernández-Suárez, D. (2015). Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology, 131, 65-86. https://doi.org/https://doi.org/10.1016/j.pneurobio.2015.05.003
Ginhoux, F., & Jung, S. (2014). Monocytes and macrophages: developmental pathways and tissue homeostasis. Nature Reviews Immunology, 14(6), 392-404. https://doi.org/10.1038/nri3671
Ginhoux, F., Lim, S., Hoeffel, G., Low, D., & Huber, T. (2013). Origin and differentiation of microglia. Front Cell Neurosci, 7, 45. https://doi.org/10.3389/fncel.2013.00045
Goetzl, E. J., Boxer, A., Schwartz, J. B., Abner, E. L., Petersen, R. C., Miller, B. L., Carlson, O. D., Mustapic, M., & Kapogiannis, D. (2015). Low neural exosomal levels of cellular survival factors in Alzheimer's disease. Ann Clin Transl Neurol, 2(7), 769-773. https://doi.org/10.1002/acn3.211
Goetzl, E. J., Boxer, A., Schwartz, J. B., Abner, E. L., Petersen, R. C., Miller, B. L., & Kapogiannis, D. (2015). Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology, 85(1), 40-47. https://doi.org/10.1212/wnl.0000000000001702
Gosselin, D., Skola, D., Coufal, N. G., Holtman, I. R., Schlachetzki, J. C. M., Sajti, E., Jaeger, B. N., O’Connor, C., Fitzpatrick, C., Pasillas, M. P., Pena, M., Adair, A., Gonda, D. D., Levy, M. L., Ransohoff, R. M., Gage, F. H., & Glass, C. K. (2017). An environment-dependent transcriptional network specifies human microglia identity. Science, 356(6344), eaal3222. https://doi.org/doi:10.1126/science.aal3222
Gunner, G., Cheadle, L., Johnson, K. M., Ayata, P., Badimon, A., Mondo, E., Nagy, M. A., Liu, L., Bemiller, S. M., Kim, K.-W., Lira, S. A., Lamb, B. T., Tapper, A. R., Ransohoff, R. M., Greenberg, M. E., Schaefer, A., & Schafer, D. P. (2019). Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nature Neuroscience, 22(7), 1075-1088. https://doi.org/10.1038/s41593-019-0419-y
Guo, M., Hao, Y., Feng, Y., Li, H., Mao, Y., Dong, Q., & Cui, M. (2021). Microglial Exosomes in Neurodegenerative Disease. Front Mol Neurosci, 14, 630808. https://doi.org/10.3389/fnmol.2021.630808
Gurung, S., Perocheau, D., Touramanidou, L., & Baruteau, J. (2021). The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication and Signaling, 19(1), 47. https://doi.org/10.1186/s12964-021-00730-1
Hammond, T. R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., Walker, A. J., Gergits, F., Segel, M., Nemesh, J., Marsh, S. E., Saunders, A., Macosko, E., Ginhoux, F., Chen, J., Franklin, R. J. M., Piao, X., McCarroll, S. A., & Stevens, B. (2019). Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 50(1), 253-271 e256. https://doi.org/10.1016/j.immuni.2018.11.004
Harding, C., Heuser, J., & Stahl, P. (1983). Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol, 97(2), 329-339. https://doi.org/10.1083/jcb.97.2.329
He, P., Williams, B. A., Trout, D., Marinov, G. K., Amrhein, H., Berghella, L., Goh, S. T., Plajzer-Frick, I., Afzal, V., Pennacchio, L. A., Dickel, D. E., Visel, A., Ren, B., Hardison, R. C., Zhang, Y., & Wold, B. J. (2020). The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature, 583(7818), 760-767. https://doi.org/10.1038/s41586-020-2536-x
Holtzman, D. M., Morris, J. C., & Goate, A. M. (2011). Alzheimer's disease: the challenge of the second century. Sci Transl Med, 3(77), 77sr71. https://doi.org/10.1126/scitranslmed.3002369
Hoshino, M., Sone, M., Fukata, M., Kuroda, S., Kaibuchi, K., Nabeshima, Y., & Hama, C. (1999). Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1. J Biol Chem, 274(25), 17837-17844. https://doi.org/10.1074/jbc.274.25.17837
Huotari, J., & Helenius, A. (2011). Endosome maturation. Embo j, 30(17), 3481-3500. https://doi.org/10.1038/emboj.2011.286
Isola, A. L., & Chen, S. (2017). Exosomes: The Messengers of Health and Disease. Curr Neuropharmacol, 15(1), 157-165. https://doi.org/10.2174/1570159x14666160825160421
Johnstone, R. M. (2005). Revisiting the road to the discovery of exosomes. Blood Cells Mol Dis, 34(3), 214-219. https://doi.org/10.1016/j.bcmd.2005.03.002
Jolly, S., Lang, V., Koelzer, V. H., Sala Frigerio, C., Magno, L., Salinas, P. C., Whiting, P., & Palomer, E. (2019). Single-Cell Quantification of mRNA Expression in The Human Brain. Sci Rep, 9(1), 12353. https://doi.org/10.1038/s41598-019-48787-w
Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nat Rev Cancer, 9(4), 239-252. https://doi.org/10.1038/nrc2618
Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478). https://doi.org/10.1126/science.aau6977
Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., Itzkovitz, S., Colonna, M., Schwartz, M., & Amit, I. (2017). A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell, 169(7), 1276-1290.e1217. https://doi.org/10.1016/j.cell.2017.05.018
Kristen, H., Sastre, I., Aljama, S., Fuentes, M., Recuero, M., Frank-García, A., Martin, A., Sanchez-Juan, P., Lage, C., Bullido, M. J., & Aldudo, J. (2021). LAMP2 deficiency attenuates the neurodegeneration markers induced by HSV-1 infection. Neurochemistry International, 146, 105032. https://doi.org/https://doi.org/10.1016/j.neuint.2021.105032
Lambert, J.-C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., Jun, G., DeStefano, A. L., Bis, J. C., Beecham, G. W., Grenier-Boley, B., Russo, G., Thornton-Wells, T. A., Jones, N., Smith, A. V., Chouraki, V., Thomas, C., Ikram, M. A., Zelenika, D., . . . Aging Research in Genomic, E. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 45(12), 1452-1458. https://doi.org/10.1038/ng.2802
Lee, H. J., & Zheng, J. J. (2010). PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal, 8, 8. https://doi.org/10.1186/1478-811x-8-8
Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology, 17(3), 157-172. https://doi.org/10.1038/s41582-020-00435-y
Li, Q., & Barres, B. A. (2018). Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol, 18(4), 225-242. https://doi.org/10.1038/nri.2017.125
Lin, L., Desai, R., Wang, X., Lo, E. H., & Xing, C. (2017). Characteristics of primary rat microglia isolated from mixed cultures using two different methods. J Neuroinflammation, 14(1), 101. https://doi.org/10.1186/s12974-017-0877-7
Liu, W., Bai, X., Zhang, A., Huang, J., Xu, S., & Zhang, J. (2019). Role of Exosomes in Central Nervous System Diseases. Front Mol Neurosci, 12, 240. https://doi.org/10.3389/fnmol.2019.00240
Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D., Ballard, C., Banerjee, S., Burns, A., Cohen-Mansfield, J., Cooper, C., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Larson, E. B., Ritchie, K., Rockwood, K., Sampson, E. L., . . . Mukadam, N. (2017). Dementia prevention, intervention, and care. Lancet, 390(10113), 2673-2734. https://doi.org/10.1016/s0140-6736(17)31363-6
Mathys, H., Adaikkan, C., Gao, F., Young, J. Z., Manet, E., Hemberg, M., De Jager, P. L., Ransohoff, R. M., Regev, A., & Tsai, L. H. (2017). Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution. Cell Rep, 21(2), 366-380. https://doi.org/10.1016/j.celrep.2017.09.039
Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J. Z., Menon, M., He, L., Abdurrob, F., Jiang, X., Martorell, A. J., Ransohoff, R. M., Hafler, B. P., Bennett, D. A., Kellis, M., & Tsai, L.-H. (2019). Single-cell transcriptomic analysis of Alzheimer’s disease. Nature, 570(7761), 332-337. https://doi.org/10.1038/s41586-019-1195-2
Meda, S. A., Koran, M. E., Pryweller, J. R., Vega, J. N., & Thornton-Wells, T. A. (2013). Genetic interactions associated with 12-month atrophy in hippocampus and entorhinal cortex in Alzheimer's Disease Neuroimaging Initiative. Neurobiol Aging, 34(5), 1518.e1519-1518. https://doi.org/10.1016/j.neurobiolaging.2012.09.020
Menassa, D. A., & Gomez-Nicola, D. (2018). Microglial Dynamics During Human Brain Development. Front Immunol, 9, 1014. https://doi.org/10.3389/fimmu.2018.01014
Mendiola, A. S., Yan, Z., Dixit, K., Johnson, J. R., Bouhaddou, M., Meyer-Franke, A., Shin, M.-G., Yong, Y., Agrawal, A., MacDonald, E., Muthukumar, G., Pearce, C., Arun, N., Cabriga, B., Meza-Acevedo, R., Alzamora, M. d. P. S., Zamvil, S. S., Pico, A. R., Ryu, J. K., . . . Akassoglou, K. (2023). Defining blood-induced microglia functions in neurodegeneration through multiomic profiling. Nature Immunology. https://doi.org/10.1038/s41590-023-01522-0
Mertens, A. E., Roovers, R. C., & Collard, J. G. (2003). Regulation of Tiam1-Rac signalling. FEBS Lett, 546(1), 11-16. https://doi.org/10.1016/s0014-5793(03)00435-6
Miao, C., Wang, X., Zhou, W., & Huang, J. (2021). The emerging roles of exosomes in autoimmune diseases, with special emphasis on microRNAs in exosomes. Pharmacological Research, 169, 105680. https://doi.org/https://doi.org/10.1016/j.phrs.2021.105680
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., & Tollervey, D. (1997). The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell, 91(4), 457-466. https://doi.org/10.1016/s0092-8674(00)80432-8
Mohammadi, S., Davila-Velderrain, J., & Kellis, M. (2019). Reconstruction of Cell-type-Specific Interactomes at Single-Cell Resolution. Cell Syst, 9(6), 559-568 e554. https://doi.org/10.1016/j.cels.2019.10.007
Mohammed, H., Hernando-Herraez, I., Savino, A., Scialdone, A., Macaulay, I., Mulas, C., Chandra, T., Voet, T., Dean, W., Nichols, J., Marioni, J. C., & Reik, W. (2017). Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. Cell Rep, 20(5), 1215-1228. https://doi.org/10.1016/j.celrep.2017.07.009
Mu, Q., Chen, Y., & Wang, J. (2019). Deciphering Brain Complexity Using Single-cell Sequencing. Genomics Proteomics Bioinformatics, 17(4), 344-366. https://doi.org/10.1016/j.gpb.2018.07.007
Muntasell, A., Berger, A. C., & Roche, P. A. (2007). T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. Embo j, 26(19), 4263-4272. https://doi.org/10.1038/sj.emboj.7601842
Nakagawa, Y., & Chiba, K. (2015). Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacology & Therapeutics, 154, 21-35. https://doi.org/https://doi.org/10.1016/j.pharmthera.2015.06.010
Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308(5726), 1314-1318. https://doi.org/10.1126/science.1110647
Olah, M., Menon, V., Habib, N., Taga, M. F., Ma, Y., Yung, C. J., Cimpean, M., Khairallah, A., Coronas-Samano, G., Sankowski, R., Grün, D., Kroshilina, A. A., Dionne, D., Sarkis, R. A., Cosgrove, G. R., Helgager, J., Golden, J. A., Pennell, P. B., Prinz, M., . . . De Jager, P. L. (2020). Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nature Communications, 11(1), 6129. https://doi.org/10.1038/s41467-020-19737-2
Pan, B. T., & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 33(3), 967-978. https://doi.org/10.1016/0092-8674(83)90040-5
Peinado, H., Alečković, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., García-Santos, G., Ghajar, C., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B. A., Callahan, M. K., Yuan, J., Martins, V. R., Skog, J., Kaplan, R. N., . . . Lyden, D. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med, 18(6), 883-891. https://doi.org/10.1038/nm.2753
Peters, K. Z., Cheer, J. F., & Tonini, R. (2021). Modulating the Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System. Trends Neurosci, 44(6), 464-477. https://doi.org/10.1016/j.tins.2021.02.001
Pluta, R., & Ułamek-Kozioł, M. (2019). Lymphocytes, Platelets, Erythrocytes, and Exosomes as Possible Biomarkers for Alzheimer's Disease Clinical Diagnosis. Adv Exp Med Biol, 1118, 71-82. https://doi.org/10.1007/978-3-030-05542-4_4
Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., & Geuze, H. J. (1996). B lymphocytes secrete antigen-presenting vesicles. J Exp Med, 183(3), 1161-1172. https://doi.org/10.1084/jem.183.3.1161
Rastogi, S., Sharma, V., Bharti, P. S., Rani, K., Modi, G. P., Nikolajeff, F., & Kumar, S. (2021). The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis. Int J Mol Sci, 22(1). https://doi.org/10.3390/ijms22010440
Rechsteiner, M. (1990). PEST sequences are signals for rapid intracellular proteolysis. Semin Cell Biol, 1(6), 433-440.
Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol, 6(2), 167-180. https://doi.org/10.1038/nrm1587
Saeedi, S., Israel, S., Nagy, C., & Turecki, G. (2019). The emerging role of exosomes in mental disorders. Transl Psychiatry, 9(1), 122. https://doi.org/10.1038/s41398-019-0459-9
Sankowski, R., Böttcher, C., Masuda, T., Geirsdottir, L., Sagar, Sindram, E., Seredenina, T., Muhs, A., Scheiwe, C., Shah, M. J., Heiland, D. H., Schnell, O., Grün, D., Priller, J., & Prinz, M. (2019). Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nature Neuroscience, 22(12), 2098-2110. https://doi.org/10.1038/s41593-019-0532-y
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., & Regev, A. (2015). Spatial reconstruction of single-cell gene expression data. Nat Biotechnol, 33(5), 495-502. https://doi.org/10.1038/nbt.3192
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer's disease. Lancet, 397(10284), 1577-1590. https://doi.org/10.1016/s0140-6736(20)32205-4
Scott, C. L., T'Jonck, W., Martens, L., Todorov, H., Sichien, D., Soen, B., Bonnardel, J., De Prijck, S., Vandamme, N., Cannoodt, R., Saelens, W., Vanneste, B., Toussaint, W., De Bleser, P., Takahashi, N., Vandenabeele, P., Henri, S., Pridans, C., Hume, D. A., . . . Guilliams, M. (2018). The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 49(2), 312-325.e315. https://doi.org/10.1016/j.immuni.2018.07.004
Sheikh, B. N., Bondareva, O., Guhathakurta, S., Tsang, T. H., Sikora, K., Aizarani, N., Sagar, Holz, H., Grun, D., Hein, L., & Akhtar, A. (2019). Systematic Identification of Cell-Cell Communication Networks in the Developing Brain. iScience, 21, 273-287. https://doi.org/10.1016/j.isci.2019.10.026
Smith, A. M., & Dragunow, M. (2014). The human side of microglia. Trends Neurosci, 37(3), 125-135. https://doi.org/10.1016/j.tins.2013.12.001
Solé, C., Cortés-Hernández, J., Felip, M. L., Vidal, M., & Ordi-Ros, J. (2015). miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dial Transplant, 30(9), 1488-1496. https://doi.org/10.1093/ndt/gfv128
Sone, M., Hoshino, M., Suzuki, E., Kuroda, S., Kaibuchi, K., Nakagoshi, H., Saigo, K., Nabeshima, Y., & Hama, C. (1997). Still life, a protein in synaptic terminals of Drosophila homologous to GDP-GTP exchangers. Science, 275(5299), 543-547. https://doi.org/10.1126/science.275.5299.543
Soo, C. Y., Song, Y., Zheng, Y., Campbell, E. C., Riches, A. C., Gunn-Moore, F., & Powis, S. J. (2012). Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology, 136(2), 192-197. https://doi.org/10.1111/j.1365-2567.2012.03569.x
Stahl, P. L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J. O., Huss, M., Mollbrink, A., Linnarsson, S., Codeluppi, S., Borg, A., Ponten, F., Costea, P. I., Sahlen, P., Mulder, J., Bergmann, O., . . . Frisen, J. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353(6294), 78-82. https://doi.org/10.1126/science.aaf2403
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., & Satija, R. (2019). Comprehensive Integration of Single-Cell Data. Cell, 177(7), 1888-1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031
Subramaniam, S. R., & Federoff, H. J. (2017). Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci, 9, 176. https://doi.org/10.3389/fnagi.2017.00176
Sze, C. I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L. J., Heath, J., Schultz, L., & Chang, N. S. (2004). Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. J Biol Chem, 279(29), 30498-30506. https://doi.org/10.1074/jbc.M401399200
Tian, T., Wang, Y., Wang, H., Zhu, Z., & Xiao, Z. (2010). Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem, 111(2), 488-496. https://doi.org/10.1002/jcb.22733
Trams, E. G., Lauter, C. J., Salem, N., Jr., & Heine, U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta, 645(1), 63-70. https://doi.org/10.1016/0005-2736(81)90512-5
Trotta, T., Panaro, M. A., Cianciulli, A., Mori, G., Di Benedetto, A., & Porro, C. (2018). Microglia-derived extracellular vesicles in Alzheimer's Disease: A double-edged sword. Biochem Pharmacol, 148, 184-192. https://doi.org/10.1016/j.bcp.2017.12.020
Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., Bhaduri, A., Goyal, N., Rowitch, D. H., & Kriegstein, A. R. (2019). Single-cell genomics identifies cell type-specific molecular changes in autism. Science, 364(6441), 685-689. https://doi.org/10.1126/science.aav8130
Wang, Z., Wang, Y., Yang, H., Guo, J., & Wang, Z. (2021). Doxycycline Induces Apoptosis of Brucella Suis S2 Strain-Infected HMC3 Microglial Cells by Activating Calreticulin-Dependent JNK/p53 Signaling Pathway. Front Cell Infect Microbiol, 11, 640847. https://doi.org/10.3389/fcimb.2021.640847
Xia, Y., Zhang, G., Kou, L., Yin, S., Han, C., Hu, J., Wan, F., Sun, Y., Wu, J., Li, Y., Huang, J., Xiong, N., Zhang, Z., & Wang, T. (2021). Reactive microglia enhance the transmission of exosomal alpha-synuclein via toll-like receptor 2. Brain, 144(7), 2024-2037. https://doi.org/10.1093/brain/awab122
Xu, D., Song, M., Chai, C., Wang, J., Jin, C., Wang, X., Cheng, M., & Yan, S. (2019). Exosome-encapsulated miR-6089 regulates inflammatory response via targeting TLR4. J Cell Physiol, 234(2), 1502-1511. https://doi.org/10.1002/jcp.27014
Xu, Y., Jin, M. Z., Yang, Z. Y., & Jin, W. L. (2021). Microglia in neurodegenerative diseases. Neural Regen Res, 16(2), 270-280. https://doi.org/10.4103/1673-5374.290881
Yen, W. H., Ke, W. S., Hung, J. J., Chen, T. M., Chen, J. S., & Sun, H. S. (2016). Sp1-mediated ectopic expression of T-cell lymphoma invasion and metastasis 2 in hepatocellular carcinoma. Cancer Med, 5(3), 465-477. https://doi.org/10.1002/cam4.611
Yue, B., Yang, H., Wang, J., Ru, W., Wu, J., Huang, Y., Lan, X., Lei, C., & Chen, H. (2020). Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif, 53(7), e12857. https://doi.org/10.1111/cpr.12857
Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell & Bioscience, 9(1), 19. https://doi.org/10.1186/s13578-019-0282-2
Zhang, Z., Zhang, Z., Lu, H., Yang, Q., Wu, H., & Wang, J. (2017). Microglial Polarization and Inflammatory Mediators After Intracerebral Hemorrhage. Mol Neurobiol, 54(3), 1874-1886. https://doi.org/10.1007/s12035-016-9785-6
Zhao, Y., Liu, B., Wang, J., Xu, L., Yu, S., Fu, J., Yan, X., & Su, J. (2022). Aβ and Tau Regulate Microglia Metabolism via Exosomes in Alzheimer's Disease. Biomedicines, 10(8). https://doi.org/10.3390/biomedicines10081800
Zhao, Z. Y., Han, C. G., Liu, J. T., Wang, C. L., Wang, Y., & Cheng, L. Y. (2013). TIAM2 enhances non-small cell lung cancer cell invasion and motility. Asian Pac J Cancer Prev, 14(11), 6305-6309. https://doi.org/10.7314/apjcp.2013.14.11.6305
Zhu, J., Chen, Y., Ji, J., Wang, L., Xie, G., Tang, Z., Qu, X., Liu, Z., & Ren, G. (2022). Microglial exosomal miR-466i-5p induces brain injury via promoting hippocampal neuron apoptosis in heatstroke. Front Immunol, 13, 968520. https://doi.org/10.3389/fimmu.2022.968520
校內:2028-08-21公開