簡易檢索 / 詳目顯示

研究生: 劉民偉
Liu, Min-Wei
論文名稱: 考量效率與環境永續之堆高機物流設計研究
A Study on Forklift Logistics Design by Considering Both Operational Efficiency and Environmental Sustainability
指導教授: 楊大和
Yang, Ta-Ho
陳宗義
Chen, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 120
中文關鍵詞: 堆高機配置物料搬運作業優化作業區域劃分Arena環境永續
外文關鍵詞: Forklift Allocation, Material Handling Operations Optimization, Work‐Zone Partitioning, Arena Simulation, Environmental Sustainability
相關次數: 點閱:16下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製造業自動化與永續發展目標的推進,工廠內部物流系統的效率與環境永續議題日益受到重視。堆高機作為倉儲與製造現場中最常使用的搬運設備,其配置方式與使用效率對於企業營運成本與碳排放具有關鍵影響。然而,現行多數企業缺乏系統性的堆高機作業區域劃分與資源配置策略,常導致堆高機閒置或過載情形,亦增加不必要的能源消耗與環境衝擊。
    本研究以提升堆高機使用效率為目標,提出一套結合聚類方法 (Clustering Algorithm) 與區域負荷平衡方法 (Zone Load Balancing Approach) 之物流系統設計方法。此方法分為兩階段:第一階段針對工廠內部各區域進行 P/D 點(取貨與卸貨點)位置優化;第二階段則提出新的相似係數,結合改良式階層聚類法劃分作業區域,並進行負荷平衡調整與彈性堆高機配置,提升堆高機之作業效率及使用率,並同時避免各區域發生堆高機閒置或過載。
    為驗證本方法之可行性與效益,本研究以某紡織產業案例進行實證分析,透過離散事件模擬比較本研究方法與其他傳統聚類法在多種需求情境下之表現。本研究提出之方法相較現況,可將堆高機使用率由 33.9% 提升至 73.3%、平均等待時間降低 51.1%、WIP 數減少 58.6%;同時堆高機台數由 10 台減至 7 台、每月碳排放由 1492.63 kgCO₂e 降至 1159.03 kgCO₂e,改善幅度達 22.4%。驗證本方法具備顯著之效率提升與永續價值,亦可作為企業未來進行堆高機調度與物流規劃之有效參考。

    With the advancement of automation in manufacturing and the pursuit of sustainability goals, the efficiency and environmental impact of in‐plant logistics systems have become increasingly important. As the most commonly used material‐handling equipment in warehousing and production environments, the configuration and utilization of forklifts critically affect both operating costs and carbon emissions. However, many enterprises currently lack a systematic strategy for delineating forklift work zones and allocating resources, frequently resulting in forklift idleness or overload and thereby increasing unnecessary energy consumption and environmental burden.
    This study aims to improve forklift utilization by proposing a logistics‐system‐design methodology that integrates Clustering Algorithm with a zone load balancing methods. The method is divided into two stages. In the first stage, the locations of pickup and delivery (P/D) points within the factory are optimized. In the second stage, a novel similarity coefficient is introduced and combined with an improved hierarchical clustering algorithm to partition work zones; thereafter, zone load balancing methods and flexible forklift allocation are performed to enhance operational efficiency and utilization rates while preventing forklift idleness or overload in any zone.
    To verify the feasibility and benefits of the proposed methodology, an empirical analysis is conducted using a case from the textile industry, employing discrete‐event simulation to compare the performance of our approach against traditional clustering methods under various demand scenarios. The simulation results indicate that, compared to the current configuration, the proposed method increases forklift utilization from 33.9% to 73.3%, reduces average waiting time by 51.1%, and decreases work‐in‐process (WIP) levels by 58.6%. Furthermore, the required number of forklifts decreases from 10 to 7 units, and monthly carbon emissions decline from 1,492.63 kg CO₂e to 1,159.03 kg CO₂e, achieving a 22.4% reduction. These outcomes confirm that the proposed method provides significant efficiency improvements and sustainability benefits, offering a practical reference for enterprises in future forklift dispatching and logistics planning.

    目錄 vi 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究流程 3 1.4 研究架構 5 1.5 研究產出與貢獻 5 第二章 文獻探討 6 2.1 倉儲作業 6 2.2 物料搬運系統 8 2.2.1 物料搬運系統設計 9 2.2.2 物料搬運設備 11 2.3 群組技術 13 2.3.1 聚類方法 13 2.3.2 群組技術在倉儲之應用 14 2.4 離散事件模擬於倉儲與物料搬運系統之應用 15 2.5 環境永續與環境、社會和公司治理 17 2.5.1 物料搬運作業與環境永續之關聯 18 2.5.2 搬運設備與堆高機對環境的潛在衝擊 19 第三章 方法研究與方法設計 20 3.1 P/D 點優化方法 21 3.1.1 模型假設條件 22 3.1.2 候選的P/D點位 22 3.1.3 P/D 點優化流程 23 3.2 堆高機作業區域劃分 24 3.2.1 聚類方法應用與選擇 25 3.2.2 矩陣式聚類方法 25 3.2.3 相似係數方法 27 3.2.4 階層式聚類法 32 3.3 區域負荷平衡與堆高機分配策略 36 3.3.1 區域負荷平衡調整方法 36 3.3.2 彈性堆高機配置策略 39 3.4 聚類績效指標 39 3.4.1 聚類績效指標 I 40 3.4.2 距離加權聚類績效指標 DWGI 41 3.5 離散事件模擬 43 第四章 案例背景與問題說明 47 4.1 案例公司背景簡介 47 4.2 案例現況說明 48 4.3 案例現況問題 51 第五章 方法實作與模擬分析 53 5.1 資料整理與前處理 53 5.2 P/D 點優化方法實作 55 5.3 作業區域劃分與堆高機配置實作 57 5.3.1 相似係數輸入資料處理 58 5.3.2 聚類方法實作與結果分析 59 5.3.3 區域合併與負荷平衡調整 67 5.3.4 作業區域堆高機配置 69 5.3.5 聚類績效比較 70 5.4 模擬模型建構與實驗設計 71 5.4.1 模擬軟體與系統環境說明 71 5.4.2 問題敘述與假設定義 72 5.4.3 模型概念化 73 5.4.4 資料收集與處理 74 5.4.5 模型建立 75 5.4.6 信效度分析 83 5.4.7 實驗設計 86 5.4.8 敏感度分析設計 87 5.4.9 模擬結果分析 87 5.4.10 模擬結果統計顯著性分析 95 5.5 小結 96 第六章 結論與未來建議 97 6.1 結論 97 6.2 未來建議 98 參考文獻 100

    Agarwal, A. (2008). Partitioning bottleneck work center for cellular manufacturing: An integrated performance and cost model. International Journal of Production Economics, 111(2), 635-647.
    Ago, M., Nishi, T., & Konishi, M. (2007). Simultaneous optimization of storage allocation and routing problems for belt-conveyor transportation. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 1(2), 250-261.
    Aiello, G., Enea, M., & Galante, G. (2002). An integrated approach to the facilities and material handling system design. International Journal of Production Research, 40(15), 4007-4017.
    Albrecht, M. (2005). Equipment sizing of a material handling system using discrete event simulation. Application of Computers and Operations Research in the Mineral Industry, 449-455.
    Alhourani, F., & Seifoddini, H. (2007). Machine cell formation for production management in cellular manufacturing systems. International Journal of Production Research, 45(4), 913-934.
    Asef-Vaziri, A., & Ortiz, R. (2008). The value of the shortest loop covering all work centers in a manufacturing facility layout. International Journal of Production Research, 46(3), 703-722.
    Becerra-Fernandez, M., Romero, O. R., Trujillo-Diaz, J., & Herrera, M. M. (2024). Assignment-simulation model for forklifts in a distribution center with aisle constraints. Simulation Modelling Practice and Theory, 133, 102902.
    Benaglia, M. F., Chen, M.-H., Lu, S.-H., Tsai, K.-M., & Hung, S.-H. (2024). Improving the picking efficiency of a cold warehouse to avoid temperature abuse. The International Journal of Logistics Management, 35(5), 1434-1464.
    Bindi, F., Manzini, R., Pareschi, A., & Regattieri, A. (2009). Similarity-based storage allocation rules in an order picking system: an application to the food service industry. International Journal of Logistics: Research and Applications, 12(4), 233-247.
    Bouh, M. A., & Riopel, D. (2015). Material handling equipment selection: New classifications of equipments and attributes. 2015 International Conference on Industrial Engineering and Systems Management (IESM) (pp. 461-468), IEEE.
    Bozer, Y. A., & Srinivasan, M. M. (1992). Tandem AGV systems: a partitioning algorithm and performance comparison with conventional AGV systems. European journal of operational research, 63(2), 173-191.
    Carli, R., Dotoli, M., Digiesi, S., Facchini, F., & Mossa, G. (2020). Sustainable scheduling of material handling activities in labor-intensive warehouses: A decision and control model. Sustainability, 12(8), 3111.
    Cesarone, F., Martino, M. L., Ricca, F., & Scozzari, A. (2024). Managing ESG ratings disagreement in sustainable portfolio selection. Computers & Operations Research, 170, 106766.
    Chan, H. M., & Milner, D. (1982). Direct clustering algorithm for group formation in cellular manufacture. Journal of Manufacturing systems, 1(1), 65-75.
    Chandrasekharan, M., & Rajagopalan, R. (1987). ZODIAC—an algorithm for concurrent formation of part-families and machine-cells. International Journal of Production Research, 25(6), 835-850.
    Chu, C.-H., & Tsai, M. (1990). A comparison of three array-based clustering techniques for manufacturing cell formation. The International Journal Of Production Research, 28(8), 1417-1433.
    Cottyn, J., Govaert, T., & Van Landeghem, H. (2008). Alternative line delivery strategies support a forklift free transition in a high product variety environment. 11th International Workshop on Harbor Maritime Multimodal Logistics Modeling and Simulation (HMS 2008) (pp. 55-60), DIPTIM University.
    De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European journal of operational research, 182(2), 481-501.
    Deb, S., & Bhattacharyya, B. (2005). Manufacturing Facilities Layout Design Considering Pick Up/Drop-Off Positions. Opsearch, 42, 98-111.
    Delgoshaeia, A., Delgoshaeib, A., & Alic, A. (2019). Evolution of clustering techniques in designing cellular manufacturing systems: A state-of-art. International Journal of Industrial Engineering Computations, 10, 177-198.
    Diefenbach, H., Grosse, E. H., & Glock, C. H. (2024). Human-and-cost-centric storage assignment optimization in picker-to-parts warehouses. European journal of operational research, 315(3), 1049-1068.
    Eko Saputro, T., & Daneshvar Rouyendegh, B. (2016). A hybrid approach for selecting material handling equipment in a warehouse. International Journal of Management Science and Engineering Management, 11(1), 34-48.
    Flachenecker, F., Bleischwitz, R., & Rentschler, J. E. (2017). Investments in material efficiency: the introduction and application of a comprehensive cost–benefit framework. Journal of Environmental Economics and Policy, 6(2), 107-120.
    Giordano, V., Zhang, J. B., Naso, D., Wong, M., Lewis, F. L., & Carbotti, A. (2006). Matrix-based discrete event control of automated material handling systems. Proceedings of the 45th IEEE Conference on Decision and Control (pp. 6074-6079), IEEE.
    Greenwood, A. G. (2016). An approach to represent material handlers as agents in discrete-event simulation models. Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection: International Workshops of PAAMS 2016, Sevilla, Spain, June 1-3, 2016. Proceedings 14 (pp. 98-109), Springer International Publishing, 2016.
    Grznár, P., Gregor, M., Mozol, Š., Mozolová, L., Krump, H., Mizerák, M., & Trojan, J. (2024). A comprehensive analysis of sensitivity in simulation models for enhanced system understanding and optimisation. Processes, 12(4), 716.
    Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), 1-21.
    Hao, Q., & Shen, W. (2008). Implementing a hybrid simulation model for a Kanban-based material handling system. Robotics and Computer-Integrated Manufacturing, 24(5), 635-646.
    Ho, G., Tang, V., Tong, P., & Tam, M. (2025). Demand-driven storage allocation for optimizing order picking processes. Expert Systems with Applications, 126812.
    Hu, B., Guo, H., Tao, X., & Zhang, Y. (2023). Construction of digital twin system for cold chain logistics stereo warehouse. IEEE Access, 11, 73850-73862.
    Issaoui, Y., Khiat, A., Haricha, K., Bahnasse, A., & Ouajji, H. (2022). An advanced system to enhance and optimize delivery operations in a smart logistics environment. IEEE Access, 10, 6175-6193.
    Kalkha, H., Khiat, A., Bahnasse, A., & Ouajji, H. (2024). Enhancing warehouse efficiency with time series clustering: A hybrid storage location assignment strategy. IEEE Access.
    Kelton, W. D., Sadowski, R. P., & Swets, N. B. (2013). Simulation with Arena (6 ed.). McGraw Hill Education.
    Klausnitzer, A., & Lasch, R. (2019). Optimal facility layout and material handling network design. Computers & Operations Research, 103, 237-251.
    Kleijnen, J. P. (2009). Sensitivity analysis of simulation models. Operations research.
    Li, Z., Sang, H., Pan, Q., Gao, K., Han, Y., & Li, J. (2022). Dynamic AGV scheduling model with special cases in matrix production workshop. IEEE Transactions on Industrial Informatics, 19(6), 7762-7770.
    Loske, D., & Klumpp, M. (2021). Learning effects and mental fatigue of forklift operators in food retail logistics: An empirical analysis through the lens of behavioral operations management. IFAC-PapersOnLine, 54(1), 19-24.
    Marchet, G., Melacini, M., Perotti, S., & Tappia, E. (2013). Development of a framework for the design of autonomous vehicle storage and retrieval systems. International Journal of Production Research, 51(14), 4365-4387.
    Martins, V. W. B., Anholon, R., Sanchez-Rodrigues, V., Leal Filho, W., & Quelhas, O. L. G. (2021). Brazilian logistics practitioners' perceptions on sustainability: an exploratory study. The International Journal of Logistics Management, 32(1), 190-213.
    Mashaei, M., & Lennartson, B. (2012). A universal framework for lean design and control of automated material handling systems. Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012), IEEE, 2012.
    McAuley, J. (1972). Machine grouping for efficient production. Production engineer, 51(2), 53-57.
    Montevechi, J. A. B., de Almeida Filho, R. G., Paiva, A., Costa, R., & Medeiros, A. L. (2010). Sensitivity analysis in discrete-event simulation using fractional factorial designs. Journal of Simulation, 4(2), 128-142.
    Murugan, M., & Selladurai, V. (2007). Optimization and implementation of cellular manufacturing system in a pump industry using three cell formation algorithms. The International Journal of Advanced Manufacturing Technology, 35, 135-149.
    Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing systems, 33(2), 241-261.
    Nguyen, V. T. (2024). Fuel-Saving Solution for Forklifts Using Hydraulic Energy Storage and Regeneration Device Cluster Additionally Installed. Advances in Science and Technology. Research Journal, 18(4).
    Niknam, T., & Amiri, B. (2010). An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Applied Soft Computing, 10(1), 183-197.
    Pang, K., Zhang, K., & Ma, S. (2021). Tailpipe emission characterizations of diesel-fueled forklifts under real-world operations using a portable emission measurement system. Journal of Environmental Sciences, 100, 34-42.
    Parvini, M. (2011). 9–Packaging and material handling. Logistics Operations and Management, 155-180.
    Patricio, R., & Mendes, A. (2020). Consumption patterns and the advent of automated guided vehicles, and the trends for automated guided vehicles. Current Robotics Reports, 1(3), 145-149.
    Pérez, J., Carreño, G., Çivit, O., & Williams, E. J. (2017). Simulation Improves Material Handling in General Assembly. SIMUL 2017, 15.
    Qiuyun, T., Hongyan, S., Hengwei, G., & Ping, W. (2021). Improved particle swarm optimization algorithm for AGV path planning. IEEE Access, 9, 33522-33531.
    Rajagopalan, S., Heragu, S. S., & Taylor, G. D. (2004). A Lagrangian relaxation approach to solving the integrated pick-up/drop-off point and AGV flowpath design problem. Applied Mathematical Modelling, 28(8), 735-750.
    Rossi, A., Aubry, A., & Jacomino, M. (2011). A sensitivity analysis to assess the completion time deviation for multi-purpose machines facing demand uncertainty. Annals of Operations Research, 191, 219-249.
    Saavedra Sueldo, C., Perez Colo, I., De Paula, M., Villar, S. A., & Acosta, G. G. (2025). Simulation-based metaheuristic optimization algorithm for material handling. Journal of Intelligent Manufacturing, 36(3), 1689-1709.
    Šaderová, J., Marasová, D., & Galliková, J. (2018). Simulation as logistic support to handling in the warehouse: Case study. TEM Journal, 7(1), 112.
    Sarker, B. R. (2001). Measures of grouping efficiency in cellular manufacturing systems. European journal of operational research, 130(3), 588-611.
    Segura, L. C., Naser, A., Abreu, R., & Perez-Lopez, J. A. (2024). ESG dimensions and corporate value: insights for sustainable investments. Sustainability, 16(17), 7376.
    Seifoddini, H., & Djassemi, M. (1995). Merits of the production volume based similarity coefficient in machine cell formation. Journal of Manufacturing systems, 14(1), 35-44.
    Seifoddini, H. K. (1989). Single linkage versus average linkage clustering in machine cells formation applications. Computers & Industrial Engineering, 16(3), 419-426.
    Semini, M., Fauske, H., & Strandhagen, J. O. (2006). Applications of discrete-event simulation to support manufacturing logistics decision-making: a survey. Proceedings of the 2006 Winter Simulation Conference (pp. 1946-1953), IEEE.
    Senadheera, S. S., Withana, P. A., Dissanayake, P. D., Sarkar, B., Chopra, S. S., Rhee, J. H., & Ok, Y. S. (2021). Scoring environment pillar in environmental, social, and governance (ESG) assessment. Sustainable Environment, 7(1), 1960097.
    Şenaras, O. M., İnanç, Ş., Eren Şenaras, A., & Öngen Bilir, B. (2025). Comparing the Use of Ant Colony Optimization and Genetic Algorithms to Organize Kitting Systems Within Green Supply Chain Management Practices. Sustainability, 17(5), 2001.
    Setiawan, F. B., Siva, P. M., Pratomo, L. H., & Riyadi, S. (2021). Design and implementation of smart forklift for automatic guided vehicle using raspberry pi 4. Journal of Robotics and Control (JRC), 2(6), 508-514.
    Silva, A., Roodbergen, K. J., Coelho, L. C., & Darvish, M. (2022). Estimating optimal ABC zone sizes in manual warehouses. International Journal of Production Economics, 252, 108579.
    Simic, V., Dabic-Miletic, S., Tirkolaee, E. B., Stević, Ž., Ala, A., & Amirteimoori, A. (2023). Neutrosophic LOPCOW-ARAS model for prioritizing industry 4.0-based material handling technologies in smart and sustainable warehouse management systems. Applied Soft Computing, 143, 110400.
    Suboyin, A., Diaz, S., Mannan, S., Kumar, S., Baobaid, O., & Villasuso, F. (2024). The Game-Changing Role of Scope 3 Emissions in Logistics and Maritime Sustainability. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, November 2024.
    Suo, X. (2012). Facility layout. Manufacturing system, 405-432.
    Tanchoco, J. (1999). Cellular machine layout based on the Segmented Flow Topology. International Journal of Production Research, 37(5), 1041-1062.
    Tineka, Y. W. (2024). Optimization of warehouse functions, goods receiving and goods return procedures. Jurnal Manajemen Bisnis dan Terapan, 2(2), 133-145.
    Ünler, A., & Güngör, Z. (2009). Applying K-harmonic means clustering to the part-machine classification problem. Expert Systems with Applications, 36(2), 1179-1194.
    Villarreal-Zapata, G., Salais-Fierro, T. E., & Saucedo-Martínez, J. A. (2020). Intelligent system for selection of order picking technologies. Wireless Networks, 26(8), 5809-5816.
    Waghodekar, P., & Sahu, S. (1984). Machine-component cell formation in group technology: MACE. The International Journal Of Production Research, 22(6), 937-948.
    Wang, F., & Lin, J. (2004). Performance evaluation of an automated material handling system for a wafer fab. Robotics and Computer-Integrated Manufacturing, 20(2), 91-100.
    Xu, D., Zhang, C. W., Miao, Z., & Cheung, R. K. (2014). A flow allocation strategy for routing over multiple flow classes with an application to air cargo terminals. Computers & Operations Research, 51, 1-10.
    Yin, Y., & Yasuda, K. (2005). Similarity coefficient methods applied to the cell formation problem: a comparative investigation. Computers & Industrial Engineering, 48(3), 471-489.
    Yin, Y., & Yasuda, K. (2006). Similarity coefficient methods applied to the cell formation problem: A taxonomy and review. International Journal of Production Economics, 101(2), 329-352.
    Yuan, Y., Zhen, L., Wu, J., & Wang, X. (2023). Quantum behaved particle swarm optimization of inbound process in an automated warehouse. Journal of the Operational Research Society, 74(10), 2199-2214.
    Zhang, A., Li, S., Tan, L., Sun, Y., & Yao, F. (2022). Intelligent measurement and monitoring of carbon emissions for 5g shared smart logistics. Journal of Sensors, 2022(1), 8223590.
    Zhang, X., Mo, T., & Zhang, Y. (2023). Optimization of storage location assignment for non-traditional layout warehouses based on the firework algorithm. Sustainability, 15(13), 10242.
    Zhang, Y., Lin, W.-H., Huang, M., & Hu, X. (2021). Multi-warehouse package consolidation for split orders in online retailing. European journal of operational research, 289(3), 1040-1055.
    Zhao, Z., Cheng, J., Liang, J., Liu, S., Zhou, M., & Al-Turki, Y. (2024). Order picking optimization in smart warehouses with human-robot collaboration. IEEE Internet of Things Journal.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE