簡易檢索 / 詳目顯示

研究生: 蕭文哲
Shiau, Wen-je
論文名稱: 高錳酸鉀氧化TCE程序中二氧化錳生成之動力研究
Kinetic study of manganese dioxide formation in the permanganate oxidation of TCE in water
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 150
中文關鍵詞: 三氯乙烯氧化動力顆粒二氧化錳鈣離子高錳酸鉀
外文關鍵詞: Oxidation kinetics, TCE, MnO2, Particles, Calcium, Potassium permanganate
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現地氧化技術(In-Situ Chemical Oxidation, ISCO)由於使用快速、方便、加上可以氧化DNAPL污染物,對於含氯碳氫化合物具有極大之處理潛力,但正面臨MnO2阻塞之問題。
    本研究目的為探討高錳酸鉀(potassium permanganate)於室溫下氧化三氯乙烯之動力,以及氧化過程中,二氧化錳粒徑大小與質量生成之動力。實驗中TCE初始濃度設計為 0.38 mM,高錳酸鉀濃度為TCE之8倍及2倍,分別在四種環境條件下,包括︰(1)去離子水中; (2)磷酸鹽(34 mM)緩衝溶液(pH 6.6)中; (3)鈣離子(Ca2+=1.0 mM、0.1 mM)條件中,進行實驗。
    實驗結果顯示,四種環境因子對TCE去除效率並沒有顯著差異,而磷酸緩衝鹽的添加於短時間內可以節省較多的高錳酸鉀,且並不會對TCE的去除率有負面的影響,且能有效控制pH。不攪拌與攪拌系統之粒徑增長速度相較,系統擾動將會加速顆粒生成及並增加生成顆粒之粒徑。
    反應過程中,氯離子生成快速,顯示TCE副產物少,可以完全被降解。
    二氧化錳粒徑分析動力實驗結果顯示,去離子水溶液中,於1天內之粒徑並無明顯差異。磷酸鹽系統中於短時間內有良好抑制固體顆粒生成之能力。添加鈣離子之系統,KMnO4/TCE =8添加鈣離子(0.1 mM)為各系統粒徑增大速率之最快者,而TCE濃度對系統達平衡之顆粒粒徑無明顯影響。
    二氧化錳質量生成動力顯示,去離子水溶液中,高錳酸鉀之濃度於短時間無造成顯著影響,但隨著時間之進行,將對固體顆粒之濃度造成影響。磷酸鹽於短時間內有良好抑制固體顆粒生成之能力,但長期而言,也會生成大顆粒之沉澱。添加鈣離子之系統,高濃度之KMnO4產生固體顆粒之濃度較高,生成動力較快,而降低TCE濃度對固體顆粒濃度有明顯降低之效果。
    各系統中TCE降解如同文獻中所提,皆可以二階不可逆的動力模式描述,於去離子水及磷酸鹽溶液系統中,其二階反應速率常數非常接近,而鈣離子將會影響反應速率常數。本研究二階反應速率常數值介於1.7-3.8 (mol-1Ls-1),較文獻值略高。動力模式可以模擬於TCE部分可以準確描述;然而於KMnO4部分,僅可以模擬前段反應時間,模式無法模擬後半段之反應時間。

    The technology (In-Situ Chemical Oxidation , ISCO ) to uses fast , conveniently , in addition, can oxidize DNAPL pollutant , as to the thing that the chloride hydrocarbon has great treatment potentiality, but is facing MnO2 clogged problem.
    This study is to investigate the reaction kinetics of TCE with potassium permanganate, and the size and mass formation kinetics of manganese dioxide (MnO2) particles during the oxidation processes. A TCE concentration of 0.38 mM, and permanganate concentrations of 2 and 8 times to TCE concentration were used in the experiments. To account for the effect of solution matrix on the TCE oxidation and MnO2 formation, the experiments were conducted in deionized (DI) water, phosphate-buffered solution (0.034 M) of pH 6.6, and the solution with the presence of calcium at 1.0 mM and 0.1 mM.
    The experimental results show that the solution matrix did not have strong impact on the degradation of TCE. However, the degradation of permanganate in phosphate solution was much slower, even though the degradation of TCE was similar to three other cases. Agitation of the solution was found to speed up the formation kinetics as well as particles sizes of MnO2. In monitoring the formation of chloride during the oxidation processes, the recovery was very close to 100% by assuming all the TCE was oxidized. This may indicate that most of the TCE was degreased very fast. The kinetics of MnO2 generation indicated that all the particles were formed in one day for the de-ionized water system, with mean particles size ~ 0.1 m. For the phosphate solution system, particles were not formed until 8 hours to 1 day, depending on the permanganate/TCE (P/T) ratios. For the solution with calcium, the sizes of MnO2 particles grew most rapidly. In addition, TCE concentration did not affect particle size much.
    The formation kinetics of MnO2 mass shows that, in the de-ionized water solution, the permanganate concentration did not affect MnO2 mass concentration in short time. However, higher concentration of permanganate may produce higher concentration of MnO2 mass. In the phosphate system, although the formation of MnO2 particles were inhibited at short time, the mass of solid MnO2 was similar to that for other systems at time > 14 days. With the presence of calcium, MnO2 mass level increased much more rapid than all the other systems. In addition, lower TCE concentration may result lower particle mass of MnO2. .
    As suggested in the literature, all the TCE degradation in this study may be simulated by an irreversible second order reaction kinetics. The rate constants were between 1.7 and 3.8 mol-1Ls-1, which are in the same order of those reported in the literature. Although the kinetic models describe the degradation of TCE very well, only the first portion of permanganate degradation followed the model, and more accurate models need to be developed for simulating the permanganate concentration change in the oxidation processes.

    目 錄 摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 XI 圖目錄 XIV 第一章 前言 1-1 1.1 研究緣起 1-1 1.1 研究目的 1-3 第二章 文獻回顧 2-1 2.1 地下水中常見污染物介紹 2-1 2.1.1 TCE基本特性 2-2 2.1.2 TCE於現地移動 2-4 2.2 現地氧化處理介紹 2-6 2.2.1反應是否能夠發生,及氧化能力 2-6 2.2.2氧化劑是否能夠接觸到污染物 2-9 2.3高錳酸鉀基本特性 2-12 2.4高錳酸鉀之氧化反應 2-14 2.4.1反應化學計量學 2-15 2.4.2高錳酸鉀之反應動力 2-16 2.4.3高錳酸鉀氧化反應途徑 2-20 2.5二氧化錳結構及基本特性 2-23 2.5.1影響二氧化錳之生成因素 2-25 2.5.2二氧化錳阻塞問題 2-29 第三章 實驗設備與方法 3-1 3.1 實驗試劑與設備 3-3 3.1.1 反應器空白實驗 3-4 3.2 高錳酸鉀之濃度標定及分析 3-5 3.3 三氯乙烯之分析方法 3-7 3.4 粒徑分佈分析 3-9 3.4.1 雷射粒徑分析原理 3-9 3.4.2 粒徑分佈 3-10 3.4.3 雷射粒徑分析儀之校正 3-12 3.5 利用感應耦合電漿原子放射光譜儀之分析 3-14 3.5.1 重金屬分析 3-15 3.5.2 實驗分析流程 3-16 3.5.3 檢量線製備與樣品檢測 3-17 3.6 氯離子之分析 3-19 3.6.1 方法概要 3-19 3.6.2 設備及材料 3-20 3.6.3 檢量線製備與樣品檢測 3-21 3.7 pH值與ORP之監測 3-22 第四章 結果與討論 4-1 4.1 反應動力 4-1 4.1.1 高錳酸鉀消耗與三氯乙烯降解之動力 4-2 4.1.1.1高錳酸鉀/三氯乙烯莫爾數比=8 4-2 4.1.1.2高錳酸鉀/三氯乙烯莫爾數比=2 4-7 4.2 二氧化錳生成影響 4-12 4.2.1 攪拌對二氧化錳粒徑分佈之影響 4-12 4.2.2 量測時間之影響 4-16 4.3 質量平衡 4-18 4.3.1 氯離子之質量平衡 4-18 4.3.1.1高錳酸鉀/三氯乙烯莫爾數比=8 4-18 4.3.1.2高錳酸鉀/三氯乙烯莫爾數比=2 4-20 4.3.2 錳的質量平衡 4-22 4.3.2.1高錳酸鉀/三氯乙烯莫爾數比=8 4-22 4.3.2.2高錳酸鉀/三氯乙烯莫爾數比=2 4-25 4.3.2.3三氯乙烯濃度效應 4-28 4.4 不同環境下二氧化錳生成動力 4-31 4.4.1 去離子水溶液 4-31 4.4.1.1高錳酸鉀/三氯乙烯莫爾數比=8 4-31 4.4.1.2高錳酸鉀/三氯乙烯莫爾數比=2 4-35 4.4.2 磷酸緩衝鹽之影響 4-40 4.4.2.1高錳酸鉀/三氯乙烯莫爾數比=8 4-40 4.4.2.2高錳酸鉀/三氯乙烯莫爾數比=2 4-43 4.4.3 鈣離子之影響 4-48 4.4.3.1高錳酸鉀/三氯乙烯莫爾數比=8添加鈣離子(1.0 mM) 4-48 4.4.3.2高錳酸鉀/三氯乙烯莫爾數比=8添加鈣離子 (0.1 mM) 4-52 4.4.3.3高錳酸鉀/三氯乙烯莫爾數比=2添加鈣離子(1.0 mM) 4-56 4.4.3.4 高錳酸鉀/三氯乙烯莫爾數比=2添加鈣離子(0.1 mM) 4-60 4.5 三氯乙烯濃度效應 4-67 4.5.1 高錳酸鉀消耗與三氯乙烯降解之動力關係 4-67 4.5.2 對二氧化錳粒徑分佈之影響 4-71 4.5.3 綜合比較 4-76 4.6 模式模擬 4-80 4.6.1 二階反應動力常數及模擬 4-80 4.6.2 假一階反應動力常數及模擬 4-88 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-4 表目錄 表2-1 三氯乙烯化性表(環保署, 2007) 2-3 表2-2三氯乙烯物性表(環保署, 2007) 2-4 表2-3ㄧ般常見的氧化劑及其自由基之氧化還原電位 2-7 表2-4四種化學氧化劑適用處理之污染物 2-9 表2-5高錳酸鉀之物化特性 2-12 表2-6環境因子對二氧化錳膠體顆粒之影響 2-27 表3-1標準液(0.3 m)之校正 3-12 表4-1高錳酸鉀剩餘率及系統環境參數值(P/T=8) 4-3 表4 2 TCE去除率及反應動力常數(P/T=8) 4-4 表4-3高錳酸鉀剩餘率及系統環境參數值(P/T=2) 4-7 表4-4 TCE去除率及反應動力常數(P/T=2) 4-8 表4-5 KMnO4/TCE=8添加鈣離子(1.0 mM),靜置與攪拌顆粒之粒徑分佈,其中(a)主要粒徑波峰隨時間變化(b) 粒徑平均值變化,單位 m 4-12 表4-6 KMnO4/TCE=8添加鈣離子(1.0 mM),靜置系統之顆粒粒徑分佈之波峰對應的粒徑隨時間變化值 4-16 表4-7 KMnO4/TCE=8於四種環境因子影響下,氯離子質量平衡隨時間變化值 4-19 表4-8 KMnO4/TCE=2於四種環境因子影響下,氯離子質量平衡隨時間變化值 4-20 表4-9 KMnO4/TCE=8於四種環境因子影響下,錳之質量平衡(a)480分鐘以內(b)40320分鐘以內 4-23 表4-10 KMnO4/TCE=2於四種環境因子影響下,錳之質量平衡(a)480分鐘以內(b)40320分鐘以內 4-24 表4-11 TCE之濃度值由0.38 mM降低至0.076 mM於添加氯化鈣(1.0 mM)之影響下,錳之質量平衡(a)480分鐘以內(b)40320分鐘以內(P/T=8) 4-28 表4-12 KMnO4/TCE=8於去離子水溶液中,固體顆粒之(a)粒徑分佈, 4-32 表4-13 KMnO4/TCE=2於去離子水溶液中,固體顆粒之(a)粒徑分佈,(b)質量生成動力 4-36 表4-14 KMnO4/TCE=8於磷酸緩衝鹽水溶液中,固體顆粒之(a)粒徑分佈,(b)質量生成動力 4-41 表4-15 KMnO4/TCE=2於磷酸緩衝鹽水溶液中,固體顆粒之(a)粒徑分佈,(b)質量生成動力 4-44 表4-16 KMnO4/TCE=8添加鈣離子(1.0 mM),固體顆粒之(a)粒徑分佈,(b)質量生成動力 4-49 表4-17 KMnO4/TCE=8添加鈣離子(0.1 mM),固體顆粒之(a)粒徑分佈,(b)質量生成動力 4-53 表4-18 KMnO4/TCE=2添加鈣離子(1.0 mM),固體顆粒之(a)粒徑分佈,(b)質量生成動力 4-57 表4-19 KMnO4/TCE=2添加鈣離子(0.1 mM),固體顆粒之(a)粒徑分佈,(b)質量 生成動力 4-61 表4-20高錳酸鉀剩餘率及系統環境參數值(P/T=8) 4-67 表4-21 TCE去除率及反應動力常數(P/T=8) 4-68 表4-22 TCE0=0.076 mM系統內,KMnO4/TCE=8添加鈣離子(1.0 mM),固體顆粒之(a)粒徑分佈,(b)質量生成動力 4-73 表4-23 各系統於1天時之平均粒徑(m) 4-78 表4-24 各系統內固體態錳之濃度(mg/L) (a)30 mins,(b)14 天 4-78 表4-25 KMnO4/TCE=8及2於四種環境因子影響之反應動力速率常數 4-81 圖目錄 圖2-1 高錳酸鹽氧化三氯乙烯之路徑 2-21 圖2-2 TEM分析氧化錳粉末(Li and Schwartz, 2004) 2-23 圖2-3無機氧化錳的結晶結構 2-24 圖2-4 TCE濃度及地下水中砂子或黏土顆粒,對二氧化錳顆粒(>0.45 m)生成之影響 2-28 圖2-5錳之混合物優勢區域圖示 2-28 圖3-1 整體實驗流程圖 3-2 圖3-2 3~65小時內TCE之反應器空白實驗 3-4 圖3-3 經過濾後之高錳酸鉀標準濃度之檢量線 3-6 圖3-4 頂空固相微萃取(HS-SPME)法裝置圖 3-8 圖3-5 TCE之檢量線 3-8 圖3-6粒徑分布示意圖 3-10 圖3-7 累積分佈圖 3-11 圖3-8 密度分佈圖 3-11 圖3-9 0.3 m分析三次之粒徑分佈圖 3-13 圖3-10 為溶液中金屬離子分析之實驗流程 3-15 圖3-11 錳之檢量線 3-18 圖3-12 鈣之檢量線 3-18 圖3-13 鉀之檢量線 3-19 圖3-14 氯離子之檢量線 3-21 圖4-1高錳酸鉀自解曲線圖(28 days) 4-2 圖4-2高錳酸鉀氧化三氯乙烯於四種環境因子影響下之動力曲線圖。(a) 高錳酸鉀剩餘率, (b) 三氯乙烯去除率, (c) pH變化, (d) ORP變化 (P/T=8)。 4-6 圖4-3高錳酸鉀氧化三氯乙烯於四種環境因子影響下之動力曲線圖。 (a) 高錳酸鉀剩餘率, (b) 三氯乙烯去除率, (c) pH變化, (d) ORP變化 (P/T=2)。 4-10 圖4-4 KMnO4/TCE=8添加鈣離子(1.0 mM),靜置與攪拌(200 rpm)之二氧化錳粒徑分佈比較。(a) 靜置1440分鐘以內,(b) 靜置28天以內(c) 攪拌480分鐘以內,(d) 攪拌28天以內。 4-15 圖4-5 KMnO4/TCE=8添加鈣離子(1.0 mM),靜置系統於測量過程內二氧化錳粒徑分佈變化 4-17 圖4-6 高錳酸鉀氧化三氯乙烯於四種環境因子影響下,氯離子質量平衡之動力曲線圖(P/T=8) 4-19 圖4-7 高錳酸鉀氧化三氯乙烯於四種環境因子影響下,氯離子質量平衡之動力曲線圖(P/T=2) 4-21 圖4-8 高錳酸鉀氧化三氯乙烯於四種環境因子影響下,錳之質量平衡動力曲線圖(P/T=8) 4-24 圖4-9 高錳酸鉀氧化三氯乙烯於四種環境因子影響下,錳之質量平衡動力曲線圖(P/T=2) 4-27 圖4-10 高錳酸鉀氧化三氯乙烯(0.076 mM)於添加氯化鈣(1.0 mM)之影響下,錳之質量平衡動力曲線圖(P/T=8) 4-29 圖4-11 KMnO4/TCE=8於去離子水溶液中,固體顆粒之粒徑及質量分佈圖。(a) 480分鐘以內,(b) 28天以內 4-33 圖4-12 KMnO4/TCE=8於去離子水溶液中,固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-34 圖4-13 KMnO4/TCE=2於去離子水溶液中,固體顆粒之粒徑分佈圖。(a) 480分鐘以內,(b) 28天以內 4-37 圖4-14 KMnO4/TCE=2於去離子水溶液中,固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-38 圖4-15 KMnO4/TCE=8於磷酸緩衝鹽水溶液中,固體顆粒28天以內之粒徑分佈圖 4-42 圖4-16 KMnO4/TCE=8於磷酸緩衝鹽水溶液中,固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-42 圖4-17 KMnO4/TCE=2於磷酸緩衝鹽水溶液中,固體顆粒28天以內之粒徑分佈圖 4-45 圖4-18 KMnO4/TCE=2於磷酸緩衝鹽水溶液中,固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-45 圖4-19 KMnO4/TCE=8添加鈣離子(1.0 mM),固體顆粒之粒徑分佈圖。(a) 480分鐘以內,(b) 28天以內 4-50 圖4-20 KMnO4/TCE=8添加鈣離子(1.0 mM),固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-51 圖4 21 KMnO4/TCE=8添加鈣離子(0.1 mM),固體顆粒之粒徑分佈圖。(a) 480分鐘以內,(b) 28天以內 4-54 圖4-22 KMnO4/TCE=8添加鈣離子(0.1 mM),固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-55 圖4-23 KMnO4/TCE=2添加鈣離子(1.0 mM),固體顆粒之粒徑分佈圖。(a) 480分鐘以內,(b) 28天以內 4-58 圖4-24 KMnO4/TCE=2添加鈣離子(1.0 mM),固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-59 圖4-25 KMnO4/TCE=2添加鈣離子(0.1 mM),固體顆粒之粒徑分佈圖。(a) 24小時以內,(b) 28天以內 4-62 圖4-26 KMnO4/TCE=2添加鈣離子(0.1 mM),固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-63 圖4-27高錳酸鉀氧化三氯乙烯添加鈣離子(1.0 mM)影響下之動力曲線圖。(a) 高錳酸鉀剩餘率, (b) 三氯乙烯去除率, (c) pH變化, (d) ORP變化 (P/T=8) 4-70 圖4-28 TCE0=0.076 mM系統內,KMnO4/TCE=8添加鈣離子(1.0mM),固體顆粒之粒徑分佈圖。(a) 24小時以內,(b) 28天以內 4-74 圖4-29 TCE0=0.076 mM系統內,KMnO4/TCE=8添加鈣離子(1.0 mM),固體型態錳、高錳酸根離子之錳及溶解態錳的錯合物,於28天以內三者動力圖 4-75 圖4-30 顆粒型態錳之比較圖(P/T=8) 4-79 圖4-31 顆粒型態錳之比較圖(P/T=2) 4-79 圖4-32高錳酸鉀氧化三氯乙烯於四種環境因子影響下,以二階回歸之反應速率常數(P/T=8)。 4-84 圖4-33高錳酸鉀氧化三氯乙烯於四種環境因子影響下,以二階回歸之反應速率常數(P/T=2)。 4-84 圖4-34高錳酸鉀氧化三氯乙烯於四種環境因子影響下,二階動力模式模擬及實驗值比較之曲線(P/T=8)。 4-85 圖4-35 TCE0=0.076 mM系統內,KMnO4/TCE=8添加鈣離子(1.0mM),二階動力模式模擬及實驗值比較之曲線。 4-86 圖4-36高錳酸鉀氧化三氯乙烯於四種環境因子影響下,二階動力模式模擬及實驗值比較之曲線(P/T=2)。 4-87 圖4-37高錳酸鉀氧化三氯乙烯於四種環境因子影響下,以假一階回歸之反應速率常數(P/T=8)。 4-90 圖4-38 TCE0=0.076 mM系統內,KMnO4/TCE=8添加鈣離子(1.0mM),假一階動力模式模擬及實驗值比較之曲線。 4-90 圖4-39高錳酸鉀氧化三氯乙烯於四種環境因子影響下,假一階動力模式模擬及實驗值比較之曲線(P/T=8)。 4-91

    Amirtharajah, A., and O’Melia, C.R, 1990. Coagulation processes:destabilization, mixing, and flocculation. Water Quality and Treatment,4th ed. 269-365.
    Amarante, D., 2000. Applying in situ chemical oxidation. Pollution Eng., 32,40-42.
    Andrabi SMZ, Khan Z., 2007. Reactivity of some sulphur- and non-sulphur-containing amino acids towards water soluble colloidal MnO2. A kinetic study. Colloid and polymer science., 285, 389-396.
    Budavari, S. et al. (1989), 7643, Potassium Permanganate, The Merck Index,
    11th edition, Merck & Co., Ine., 7636.
    Brown, R. A., Robinson, D., Skladany, G., and Loeper, J., 2003. Response to naturally occurring organic material: permanganate versus persulfate.Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1692-1698, May 12-16, Gent, Belgium.
    Chandrakanth M.S, and Amy G.L., 1996. Effects of ozone on the colloidal stability and aggregation of particles coated with natural organic matter,Environmental science & technology., 30, 431-443.
    Crimi, M.L., and Siegrist, R.L, 2004. Impact of reaction conditions on MnO2 genesis during permanganate oxidation, Journal of environmental engineering., 130, 562-572.
    Doona, C.J., and Schneider, F.W, 1993. Identification of colloidal Mn(IV) in permanganate oscillating reactions, Journal of the American chemical society., 115, 9683-9686.
    Dijkshoorn P., 2003. In-Situ chemical oxidation of chlorinated solvents with potassium permanganate on a site in Belgium. Proceedings of ConSoil,2003-8th International FZK/TNO Conference on Contaminated Soil,1686-1691, May 12-16, Gent, Belgium.
    Environmental Security Technology Certification Program (ESTCP) ,1999.Technology Status Review:In-Situ Oxidation, (http://www.estcp.gov/)
    Feynman, R.P., Leighton, R.B., and Sands, M.L., 2006. The feynman lectures on physics., San Francisco:Pearson/Addison-Wesley.
    Fieck K.J. and Reidies A.H. (1992), Chap.8:Potassiu Permanganate,Disinfection Alternatives for Safe Drinking Water, E. A. Bryant, G. P.Fulton, and G. C. Budd (editor), New York:Van Nostrand Rcinhold,259-276.
    Fogler H.S.,1999. Elements of chemical reaction engineering. third ed, Prentice-Hall, Inc. Upper Saddle River.
    Stumm W, 1992. Chemistry of the solid-water interface:Processes at the mineral-water and particle-water interface in natural systems. John Wiley & Sons, Inc. New York.
    Gates-Anderson D.D., Siegrist R.L., Cline S.R., 2001. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. Journal of environmental engineering-asce, 127, 337-347.
    Huang K.C., Hoag G.E., Chheda P., 1999. Kinetic study of oxidation of trichloroethylene by potassium permanganate. Environmental engineering science, 16, 265-274.
    Huang K.C., Hoag G.E., Chheda P., 2001. Oxidation of chlorinated ethenes by potassium permanganate:a kinetics study. Journal of hazardous materials, 87, 155-169.
    Huang K.C., Couttenye R.A., Hoag G.E., 2002. Kinetics of heat-assisted persulfate oxidation of Methyl tert-Butyl Ether (MTBE). Chemoshpere,49, 413-420.
    Honning J., Broholm M.M., Bjerg P.L., 2007.Quantification of potassium permanganate consumption and PCE oxidation in subsurface materials. Journal of contaminant hydrology., 90, 221-239.
    Insausti M.J., Mata-Perez F., and Alvarez-Macho P., 1992. Permanganate oxidation of glycine:influence of amino acid on colloidal manganese dioxide, International journal of chemical kinetics., 24, 411-419.
    Insausti M.J., Mata-Perez F., and Alvarez-Macho P., 1993. UV-VIS spectrophotometric study and dynamic analysis of the colloidal product of permanganate oxidation of a-amino acids, Reaction kinetics and catalysis letters., 51, 51-59.
    International Technology and Regulatory Cooperation (ITRC), 2001.Technical and Regulatory Guidance for In-Situ Chemical Oxidation of Contaminated Soil and Groundwater.(http://www.itrcweb.org/)
    International Technology and Regulatory Cooperation (ITRC), 2002. In situ chemical oxidation. ITRC Training Course for SRP, October.(http://www.itrcweb.org/)
    Kelly K.L., Marley M.C., and Sperry K.L., 2002. In-situ chemical oxidation on MTBE. Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, July 21-24,Niagara Falls, Ontario, Canada.
    Kabir-ud-Din, Iqubal S.M.S., Khan Z.,2005. Effect of ionic and non-ionic surfactants on the reduction of water soluble colloidal MnO2 by glycolic acid, Colloid and polymer science., 284, 276-283.
    Lewis, R.W., 2002. Key factor for a successful ISCO application with permanganate. Teleconference of In Situ Treatment of Groundwater Contaminated with Non-Aqueous Phase Liquids, Dec 10-11, Chicago,IL. (http://www.clu-in.org/)
    Li, X.D., and Schwartz F.W., 2004. DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part I. Mineralogy of Mn oxide and its dissolution in organic acids, Journal of contaminant hydrology., 68, 39-53.
    Li, XD., and Schwartz F.W., 2004. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates, Journal of contaminant hydrology., 68, 269-287.
    Liang C.J., Wang Z.S., Mohanty N., 2006. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C, Science of the total environment., 370, 271-277.
    Liang CJ, Wang Z.S., Bruell C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere., 66, 106-113.
    Morgan, J.J., and Stumm W., 1964. Colloid-chemical properties of manganese dioxide. Journal of colloid science., 19, 347- 359.
    MacKinnon L.K., Thomson N.R., 2002. Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate, Journal of contaminant hydrology., 56, 49-74.
    Posselt, H.S., and Anderson, F.J, 1968. Cation sorptopnon colloidal hydrous manganese dioxide, Environmental science & technologies., 2,1087-1093.
    Perezbenito, J.F., Brillas E, and Pouplana R, 1989. Identification of a soluble form of colloidal manganese(IV). Inorganic chemistry., 28, 390-392.
    Perezbenito, J.F., Arias C, and Brillas E, 1990. A kinetic-study of the auto-catalytic permanganate oxidation of formic acid, International journal of chemical kinetics., 22, 261-287.
    Perezbenito, J.F., and Arias C, 1991. A kinetic-study of the permanganate oxidation of triethylamine-catalysis by soluble colloids, International journal of chemical kinetics., 23, 717-732.
    Perezbenito, J.F., Arias C, and Brillas E, 1991. Kinetic treatment of autocatalytic reactions, Anales de quimica., 87, 849-852.
    Perezbenito, J.F., and Arias C, 1992a. A kinetic-study of the reaction between soluble (colloidal) manganese-dioxide and formic-acid,Journal of colloid and interface science., 149, 92-97.
    Perezbenito, J.F., and Arias C, 1992b. Occurrence of colloidal manganese-dioxide in permanganate reactions, Journal of colloid and interface science., 152, 70-84.
    Perezbenito, J.F., Arias C, and Lamrhari D, 1992. Evidence for the involvement of chromium(II) as an intermediate in the reduction of chromium(VI) to chromium(III) by formaldehyde, Journal of the chemical society-chemical communications., 472-474.
    Post, J.E. 1999. Manganese oxide minerals: Crystal structures and economic and environmental significance, Proceedings of the national academy of the united states of america., 96, 3447-3454.
    Stumm, W., and O’Melia, C.R., 1968.Stoichiometry of coagulation, Journal American water works association., 60, 5, 514.
    Stumm W, 1992. Chemistry of the solid-water interface:Processes at the mineral-water and particle-water interface in natural systems. John Wiley & Sons, Inc. New York.
    Schnarr M., Truax C., Farquhar G., 1998. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media,Journal of contaminant hydrology., 29, 205-224.
    Seol Y., and Schwartz F.W., 2000. Phase-transfer catalysis applied to the oxidation of nonaqueous phase trichloroethylene by potassium permanganate, Journal of contaminant hydrology., 44, 185-201.
    Struse A.M. and Siegrist R.L., 2000. Permanganate transport and matrix inter-action in silty clay soils. In:Wickramanayake G.B., Gavaskar A.R., and Chen A.S.C. Chemical Oxidation and Reactive Barriers.Battelle Press, Columbus, OH. pp. 67-74.
    Schroth M.H., Oostrom M., Wietsma T.W., 2001. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties, Journal of contaminant hydrology., 50, 79-98.
    Siegrist R.L., Urynowicz M.A., West O.R., Crimi M.L., and Lowe K.S.,2001. Principle and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press.
    Siegrist, R.L., Urynowicz, M.A., Crimi, M.L. and Lowe, K.S., 2002. Genesis and effects of particles produced during in situ chemical oxidation using permanganate, Journal of environmental engineering., 128, 1068-1079.
    U.S. Environmental Protection Agency (USEPA), 2004. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites:A Guide for Corrective Action Plan Reviewers, EPA 510-R-04-002.
    Urynowicz M.A. 2007. Kinetic approach for modeling TCE chemical oxidation by permanganate. Journal of advanced oxidation technologies, 10, 196-201.
    Yan Y.E., and Schwartz F.W., 1999. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. Journal of contaminant hydrology ,37, 343-365.
    Yan, Y.E., and Schwartz F.W., 2000. Kinetics and mechanisms for TCE oxidation by permanganate, Environ. Sci. Technol., 34, 2535-2541.
    行政院環保署環境檢驗所,環境檢測方法-重金屬檢測方法總則(NIEA M103.00C).
    行政院環保署環境檢驗所,環境檢測方法-水中陰離子檢測方法-離子層析法(NIEA W415.52B).
    行政院環境保護署,地下水污染防治,(http://www.epa.gov.tw)
    林財富、鄭仲凱,「現地化學氧化技術之發展與案例分析」,第八屆土壤及地下水污染整治研討會論文集,2003。
    美國水及廢水標準檢驗法第19版(Standard Methods, 19thed, Standard method of 4500,1995).
    黃昆德(2004) 利用高錳酸鉀氧化法處理三氯乙烯污染之地下水,國立中山大學環境工程研究所,碩士論文。
    高志明(2006) 於酸性環境下除去含氯有機物且能抑制二氧化錳生成的高錳酸鉀氧化法,國立中山大學,33,22,I259170(專利)。

    下載圖示 校內:立即公開
    校外:2007-07-18公開
    QR CODE