簡易檢索 / 詳目顯示

研究生: 謝政晉
Xie, Zheng-Jin
論文名稱: 以三維數值模擬分析送線型與送粉型直接能量沉積製程
Numerical investigation of Wire feeding type and Powder feeding type laser Directional Energy Deposition by three-dimensional simulations
指導教授: 曾建洲
Tseng, Chien-Chou
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 積層製造送線型直接能量沉積送粉型直接能量沉積含硫量
外文關鍵詞: Additive Manufacturing, Wire feeding type Direct Energy Deposition, , Powder feeding type Direct Energy Deposition
相關次數: 點閱:59下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為兩個部份,第一部分針對積層製造中的離軸式送線型直接能量沉積建立三維數值模型,利用套裝軟體ANSYS Fluent 18.0進行數值計算,配合多相流模型(Volume of Fluid, VOF)將計算域分為氣體相(Argon)與金屬相(S45C),並且於動量方程式中考慮固液化模型(Solidification Model)、表面張力(Surface Tension)、反衝壓力(Recoil force)、馬倫格尼效應(Marangoni effect)以及含有硫(Sulfur)之金屬在流動上的影響,在能量方程式中加入高斯分布之雷射熱源,模擬線材與基板受雷射加熱至熔化,隨著機台移動在基板上形成一道融覆層。將此模型設定針對9組實驗加工參數設置進行模擬比對融覆層尺寸後,進一步以流場角度分析不同加工參數下,對於融覆層寬高深的影響,以及有無硫成分之流動變化對融覆層的影響。第二部分利用先前建立完成的同軸式送粉型直接能量沉積三維模型,將數值模擬在有無考慮基板效應所得到的粉末濃度,以源項形式加入連續方程式,分析兩者對於融覆層尺寸的影響。

    由第一部分模擬結果分析得到,送線型直接能量沉積的融覆層寬高深成形速度,由深度最快定型高度最慢定型,深度主要受到雷射能量引起的反衝壓力影響,寬度受到前期馬倫格尼力以及雷射光斑的影響,高度需等待雷射遠離後由馬倫格尼力決定,並受到較早成形的寬度影響,其中含硫的金屬有使寬度縮減高度上升的趨勢,並且能縮短融覆層到達穩定的時間。由第二部分模擬結果得到,送粉型直接能量沉積在顆粒較大的的情況下,有無基板的粉末濃度分布差異不大,因此能直接採用解析模型得到的濃度分布做計算,以節省計算時間。

    This study comprises two main parts. In the first part, a numerical model for the off-axial wire feeding direct energy deposition process in additive manufacturing is developed using the Volume of Fluid (VOF) approach in ANSYS FLUENT 18.0. The model considers various physical mechanisms, including solidification, surface tension, recoil force, Marangoni effects, and the presence of sulfur in the metal, accounted for through source terms in the momentum equation. A Gaussian distribution laser heat source is incorporated into the energy equation to simulate the laser heating process, resulting in the formation of deposited layers on the substrate. Validation of the model is achieved through comparisons of cladding geometry measurements with experimental data for different process parameters. Subsequently, the model is utilized to analyze the effect of flow fields on cladding geometry and investigate differences between metals containing sulfur and those without sulfur.

    The second part of the study employs the three-dimensional model of coaxial powder-fed direct energy deposition. Numerical simulations of powder concentration are conducted by introducing powder distribution as a source term in the continuity equation, with and without considering the substrate effect. The objective is to analyze how these scenarios influence the dimensions of the deposited layers.

    摘要I ABSTRACTII 致謝VI 目錄VII 表目錄IX 圖目錄X 符號說明XII 第一章 緒論1 1.1 積層製造背景1 1.2 DED製程之燒熔機制與物理現象3 1.3 加工參數文獻回顧5 1.3.1 送線型DED重要加工參數6 1.3.2 送粉型DED重要加工參數11 1.4 模型文獻回顧15 1.4.1 送線型DED模型文獻回顧16 1.4.2 送粉型DED模型文獻回顧18 1.5 研究動機與目的19 第二章 研究方法21 2.1 數值模型21 2.1.1 多相流模型21 2.1.2 連續方程式23 2.1.3 動量方程式24 2.1.4 能量方程式27 2.1.5 粉末流模型30 第三章 研究結果35 3.1 網格獨立性測試35 3.2 數值模擬設置與實驗驗證36 3.3 數值模擬之熔池特徵與流場分析45 3.3.1 熔池尺寸變化趨勢46 3.3.2 融覆層溫度分布49 3.4 雷射移動速度對融覆層尺寸影響51 3.5 雷射功率對融覆層尺寸影響55 3.6 送線速度對融覆層尺寸影響57 3.7 含硫量對於融覆層成形過程與尺寸之影響59 3.8 送粉型DED之不同粉末濃度對融覆層影響64 第四章 結論與未來展望70 4.1 結論70 4.2 未來展望72 參考文獻73

    [1] D.-G. Ahn, "Directed Energy Deposition (DED) Process: State of the Art," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 8, no. 2, pp. 703-742, 2021, doi: 10.1007/s40684-020-00302-7.
    [2] M. K. Thompson et al., "Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints," CIRP Annals, vol. 65, no. 2, pp. 737-760, 2016, doi: 10.1016/j.cirp.2016.05.004.
    [3] I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, Additive Manufacturing Technologies (New York, Springer). 2021.
    [4] V. Canellidis, J. Giannatsis, and V. Dedoussis, "Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography," The International Journal of Advanced Manufacturing Technology, vol. 45, no. 7-8, pp. 714-730, 2009, doi: 10.1007/s00170-009-2006-y.
    [5] R. M. Mahamood, E. T. Akinlabi, M. Shukla, and S. Pityana, "Revolutionary Additive Manufacturing: An Overview," Lasers in Engineering (Old City Publishing), vol. 27, 2014.
    [6] A. Bandyopadhyay, Y. Zhang, and S. Bose, "Recent Developments in Metal Additive Manufacturing," Curr Opin Chem Eng, vol. 28, pp. 96-104, Jun 2020, doi: 10.1016/j.coche.2020.03.001.
    [7] D. Svetlizky et al., "Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications," Materials Today, vol. 49, pp. 271-295, 2021, doi: 10.1016/j.mattod.2021.03.020.
    [8] A. Singh, S. Kapil, and M. Das, "A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition," Additive Manufacturing, vol. 35, 2020, doi: 10.1016/j.addma.2020.101388.
    [9] C. Xizhang et al., "Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) System," Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, vol. 12, no. 6, pp. 1278-1284, 2019, doi: 10.1134/s102745101901004x.
    [10] K. Liu et al., "Microstructural evolution and mechanical properties of deep cryogenic treated Cu–Al–Si alloy fabricated by Cold Metal Transfer (CMT) process," Materials Characterization, vol. 159, 2020, doi: 10.1016/j.matchar.2019.110011.
    [11] P. Wen, G. Wang, and Y. Chen, "Effect of laser scanning and powder addition on microstructure and mechanical properties for hot-wire-feed laser additive manufacturing," Journal of Laser Applications, vol. 29, no. 2, 2017, doi: 10.2351/1.4983238.
    [12] A. Heralić, A.-K. Christiansson, and B. Lennartson, "Height control of laser metal-wire deposition based on iterative learning control and 3D scanning," Optics and Lasers in Engineering, vol. 50, no. 9, pp. 1230-1241, 2012, doi: 10.1016/j.optlaseng.2012.03.016.
    [13] B. Baufeld, E. Brandl, and O. van der Biest, "Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition," Journal of Materials Processing Technology, vol. 211, no. 6, pp. 1146-1158, 2011, doi: 10.1016/j.jmatprotec.2011.01.018.
    [14] D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, "Additive manufacturing of metals," Acta Materialia, vol. 117, pp. 371-392, 2016, doi: 10.1016/j.actamat.2016.07.019.
    [15] M. Dias da Silva, K. Partes, T. Seefeld, and F. Vollertsen, "Comparison of coaxial and off-axis nozzle configurations in one step process laser cladding on aluminum substrate," Journal of Materials Processing Technology, vol. 212, no. 11, pp. 2514-2519, 2012, doi: 10.1016/j.jmatprotec.2012.06.011.
    [16] A. V. Kudryashov, O. Homburg, A. H. Paxton, T. Mitra, and V. S. Ilchenko, "Gaussian-to-top-hat beam shaping: an overview of parameters, methods, and applications," presented at the Laser Resonators, Microresonators, and Beam Control XIV, 2012.
    [17] H. Qi, J. Mazumder, and H. Ki, "Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition," Journal of Applied Physics, vol. 100, no. 2, 2006, doi: 10.1063/1.2209807.
    [18] T. E. Abioye, J. Folkes, and A. T. Clare, "A parametric study of Inconel 625 wire laser deposition," Journal of Materials Processing Technology, vol. 213, no. 12, pp. 2145-2151, 2013, doi: 10.1016/j.jmatprotec.2013.06.007.
    [19] H. R. Zareie Rajani, S. A. A. Akbari Mousavi, and F. Madani Sani, "Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates," Materials & Design, vol. 43, pp. 467-474, 2013, doi: 10.1016/j.matdes.2012.06.053.
    [20] S. H. Mok, G. Bi, J. Folkes, and I. Pashby, "Deposition of Ti–6Al–4V using a high power diode laser and wire, Part I: Investigation on the process characteristics," Surface and Coatings Technology, vol. 202, no. 16, pp. 3933-3939, 2008, doi: 10.1016/j.surfcoat.2008.02.008.
    [21] W. Huang, S. Chen, J. Xiao, X. Jiang, and Y. Jia, "Investigation of filler wire melting and transfer behaviors in laser welding with filler wire," Optics & Laser Technology, vol. 134, 2021, doi: 10.1016/j.optlastec.2020.106589.
    [22] Y. Yu et al., "Investigation of melting dynamics of filler wire during wire feed laser welding," Journal of Mechanical Science and Technology, vol. 27, no. 4, pp. 1097-1108, 2013, doi: 10.1007/s12206-013-0218-4.
    [23] W. Huang, S. Chen, J. Xiao, X. Jiang, and Y. Jia, "Laser wire-feed metal additive manufacturing of the Al alloy," Optics & Laser Technology, vol. 134, 2021, doi: 10.1016/j.optlastec.2020.106627.
    [24] A. Barroi, D. A. Gonçalves, J. Hermsdorf, S. Kaierle, and L. Overmeyer, "Influence of Laser Power on the Shape of Single Tracks in Scanner Based Laser Wire Cladding," Physics Procedia, vol. 83, pp. 667-673, 2016, doi: 10.1016/j.phpro.2016.08.069.
    [25] Q. Li et al., "Process, microstructure and microhardness of GH3039 superalloy processed by laser metal wire deposition," Journal of Alloys and Compounds, vol. 877, 2021, doi: 10.1016/j.jallcom.2021.160330.
    [26] N. Sommer, F. Stredak, and S. Böhm, "High-Speed Laser Cladding on Thin-Sheet-Substrates—Influence of Process Parameters on Clad Geometry and Dilution," Coatings, vol. 11, no. 8, 2021, doi: 10.3390/coatings11080952.
    [27] C. Zhong, N. Pirch, A. Gasser, R. Poprawe, and J. Schleifenbaum, "The Influence of the Powder Stream on High-Deposition-Rate Laser Metal Deposition with Inconel 718," Metals, vol. 7, no. 10, 2017, doi: 10.3390/met7100443.
    [28] K. Shah, A. J. Pinkerton, A. Salman, and L. Li, "Effects of Melt Pool Variables and Process Parameters in Laser Direct Metal Deposition of Aerospace Alloys," Materials and Manufacturing Processes, vol. 25, no. 12, pp. 1372-1380, 2010, doi: 10.1080/10426914.2010.480999.
    [29] J. C. Haley, B. Zheng, U. S. Bertoli, A. D. Dupuy, J. M. Schoenung, and E. J. Lavernia, "Working distance passive stability in laser directed energy deposition additive manufacturing," Materials & Design, vol. 161, pp. 86-94, 2019, doi: 10.1016/j.matdes.2018.11.021.
    [30] U. de Oliveira, V. Ocelík, and J. T. M. De Hosson, "Analysis of coaxial laser cladding processing conditions," Surface and Coatings Technology, vol. 197, no. 2-3, pp. 127-136, 2005, doi: 10.1016/j.surfcoat.2004.06.029.
    [31] B. Bax, R. Rajput, R. Kellet, and M. Reisacher, "Systematic evaluation of process parameter maps for laser cladding and directed energy deposition," Additive Manufacturing, vol. 21, pp. 487-494, 2018, doi: 10.1016/j.addma.2018.04.002.
    [32] C. W. Hirt and B. D. Nichols, "Volume of fluid (VOF) method for the dynamics of free boundaries," Journal of Computational Physics, vol. 39, no. 1, pp. 201-225, 1981, doi: 10.1016/0021-9991(81)90145-5.
    [33] M. Sussman, P. Smereka, and S. Osher, "A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow," Journal of Computational Physics, vol. 114, no. 1, pp. 146-159, 1994, doi: 10.1006/jcph.1994.1155.
    [34] W. C. Ke et al., "Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys," Additive Manufacturing, vol. 50, 2022, doi: 10.1016/j.addma.2021.102513.
    [35] Z. Sun, W. Guo, and L. Li, "Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process," Additive Manufacturing, vol. 33, 2020, doi: 10.1016/j.addma.2020.101175.
    [36] S. Wen and Y. C. Shin, "Modeling of transport phenomena during the coaxial laser direct deposition process," Journal of Applied Physics, vol. 108, no. 4, 2010, doi: 10.1063/1.3474655.
    [37] Z. Gan, G. Yu, X. He, and S. Li, "Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel," International Journal of Heat and Mass Transfer, vol. 104, pp. 28-38, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.08.049.
    [38] Z. Li, G. Yu, X. He, S. Li, and Z. Shu, "Surface Tension-Driven Flow and Its Correlation with Mass Transfer during L-DED of Co-Based Powders," Metals, vol. 12, no. 5, 2022, doi: 10.3390/met12050842.
    [39] R. Hu et al., "Thermal fluid dynamics of liquid bridge transfer in laser wire deposition 3D printing," Science and Technology of Welding and Joining, vol. 24, no. 5, pp. 401-411, 2019, doi: 10.1080/13621718.2019.1591039.
    [40] S. M. A. Noori Rahim Abadi, Y. Mi, A. Kisielewicz, F. Sikström, and I. Choquet, "Influence of laser-wire interaction on heat and metal transfer in directed energy deposition," International Journal of Heat and Mass Transfer, vol. 205, 2023, doi: 10.1016/j.ijheatmasstransfer.2023.123894.
    [41] X. Chen, C. Wang, J. Ding, P. Bridgeman, and S. Williams, "A three-dimensional wire-feeding model for heat and metal transfer, fluid flow, and bead shape in wire plasma arc additive manufacturing," Journal of Manufacturing Processes, vol. 83, pp. 300-312, 2022, doi: 10.1016/j.jmapro.2022.09.012.
    [42] H. Geng, J. Xiong, D. Huang, X. Lin, and J. Li, "A prediction model of layer geometrical size in wire and arc additive manufacture using response surface methodology," The International Journal of Advanced Manufacturing Technology, vol. 93, no. 1-4, pp. 175-186, 2015, doi: 10.1007/s00170-015-8147-2.
    [43] J. Ding, P. Colegrove, J. Mehnen, S. Williams, F. Wang, and P. S. Almeida, "A computationally efficient finite element model of wire and arc additive manufacture," The International Journal of Advanced Manufacturing Technology, vol. 70, no. 1-4, pp. 227-236, 2013, doi: 10.1007/s00170-013-5261-x.
    [44] J. Xiong, Y. Lei, and R. Li, "Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures," Applied Thermal Engineering, vol. 126, pp. 43-52, 2017, doi: 10.1016/j.applthermaleng.2017.07.168.
    [45] S. Wei, G. Wang, Y. C. Shin, and Y. Rong, "Comprehensive modeling of transport phenomena in laser hot-wire deposition process," International Journal of Heat and Mass Transfer, vol. 125, pp. 1356-1368, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.04.164.
    [46] F. Hejripour, D. T. Valentine, and D. K. Aidun, "Study of mass transport in cold wire deposition for Wire Arc Additive Manufacturing," International Journal of Heat and Mass Transfer, vol. 125, pp. 471-484, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.04.092.
    [47] X. Bai et al., "Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing," International Journal of Heat and Mass Transfer, vol. 124, pp. 504-516, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.03.085.
    [48] Y. Huang, M. B. Khamesee, and E. Toyserkani, "A comprehensive analytical model for laser powder-fed additive manufacturing," Additive Manufacturing, vol. 12, pp. 90-99, 2016, doi: 10.1016/j.addma.2016.07.001.
    [49] H. Tan, J. Chen, F. Zhang, X. Lin, and W. Huang, "Estimation of laser solid forming process based on temperature measurement," Optics & Laser Technology, vol. 42, no. 1, pp. 47-54, 2010, doi: 10.1016/j.optlastec.2009.04.016.
    [50] Y.-J. Chou, Y.-H. Mai, and C.-C. Tseng, "Large-eddy simulation of coaxial powder flow for the laser direct deposition process," Physics of Fluids, vol. 33, no. 12, 2021, doi: 10.1063/5.0074404.
    [51] D. V. Bedenko, O. B. Kovalev, I. Smurov, and A. V. Zaitsev, "Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology," International Journal of Heat and Mass Transfer, vol. 95, pp. 902-912, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.12.046.
    [52] H. C. Hulst and H. C. van de Hulst, Light scattering by small particles. Courier Corporation, 1981.
    [53] D. Deirmendjian, "Electromagnetic scattering on spherical polydispersions," Rand Corp Santa Monica CA, 1969.
    [54] P. Sahoo, T. Debroy, and M. McNallan, "Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy," Metallurgical transactions B, vol. 19, pp. 483-491, 1988.
    [55] H. Kurose, D. Miyagi, N. Takahashi, N. Uchida, and K. Kawanaka, "3-D Eddy Current Analysis of Induction Heating Apparatus Considering Heat Emission, Heat Conduction, and Temperature Dependence of Magnetic Characteristics," IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1847-1850, 2009, doi: 10.1109/tmag.2009.2012829.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE