簡易檢索 / 詳目顯示

研究生: 李沂軒
Li, Yi-Hsuan
論文名稱: 溫度與跨膜溫度差對於氧化石墨烯奈米通道薄膜鹽度梯度發電之影響
Effects of Temperature and Transmembrane Temperature Difference on Salinity-Gradient Power Generation in Graphene Oxide Nanochannel Membranes
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 二維材料氧化石墨烯奈米通道離子選擇性離子熱電效應鹽度梯度發電海洋能源
外文關鍵詞: Two-dimensional materials, Graphene oxide, Nano-channels, Ion selectivity, Ion thermoelectric effect, Salinity-gradient power generation, Ocean energy
相關次數: 點閱:74下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的蓬勃發展,人們發現地球正面臨著嚴重的環境破壞以及資源耗竭的危機,使得聯合國在2015年通過巴黎協定以確定永續環境的目標,因此如何以永續環境的方式收集電能成為各國正視的問題。在研究中,我們由二維材料氧化石墨烯製作出層狀奈米通道薄膜,利用凡德瓦力使通道空間控制於約 0.8 nm並堆疊約12000層,並利用通道於氯化鉀電解液下重疊電雙層的特性,使薄膜具有離子選擇性,再結合溫度或離子熱電效應與鹽度梯度的作用而產生電流。當溫度或濃度梯度增大時,最大功率密度增加,測得的最大功率密度為1.57 W/m2,而離子選擇性和能量轉換效率隨著濃度梯度降低而增加,獲得最佳能量轉換效率為46.5%。由於奈米通道中的熱電效應與鹽度梯度具有協同作用,當通道具有跨模溫度差時,施加負溫度梯度產生的最大功率密度效果會比施加正溫度梯度佳,其測得的最大功率密度為不施加任何溫度時的1.6倍。若在模擬海水與淡水之濃度的電解液中施加溫度並改變其pH值的情況下,表面電荷密度隨著pH值增加而提升,於pH10時測得最大功率密度為0.85 W/m2。本研究目標為更了解薄膜的特性,如溫度與表面電荷的效應、鹽度梯度發電受溫度之響應等,以準確使用並開發出穩定的薄膜裝置,讓廢熱運用在海水與淡水間,製造出對環境友善的再生能源。

    The collection of electrical energy in a sustainable manner has become a matter of paramount importance for worldwide due to energy crisis facing our planet. In this study, we fabricated a layered nano-channel membrane using graphene-oxide two-dimensional material. By employing van der Waals forces, we controlled the channel spacing to approximately 0.8 nm and stacked approximately 12,000 layers. Leveraging the overlapping electric double layer characteristics of the channel in a potassium chloride electrolyte, the membrane exhibited ion selectivity. This, combined with the effects of temperature or ion thermoelectric phenomena and salinity gradient, resulted in the generation of electric current. As the temperature or concentration gradient increased, the maximum power density also increased. The measured maximum power density was 1.57 W/m2. Moreover, ion selectivity and energy conversion efficiency increased as the concentration gradient decreased, with the optimal energy conversion efficiency reaching 46.5%. The synergistic effects of thermoelectric phenomena and salinity gradient in the nano-channel were observed, whereby applying a negative temperature gradient across the channel yielded a maximum power density effect greater than that of applying a positive temperature gradient. The measured maximum power density in the former case was 1.6 times higher than that without any temperature gradient. When simulating the electrolyte with varying pH values in the concentration of simulated seawater and freshwater, the surface charge density increased with the rise in pH. At pH 10, the measured maximum power density was 0.85 W/m2. Overall, this study provides a deeper understanding of the characteristics of the membrane, such as the effects of temperature and surface charge, as well as the response of salinity gradient power generation to temperature. This knowledge is enable us to utilize and develop stable membrane devices, thereby harnessing waste heat between seawater and freshwater to produce environmentally friendly renewable energy.

    中文摘要 I 致謝 XIII 內容目錄 XIV 表目錄 XVI 圖目錄 XVII 縮寫說明 XXI 第1章 緒論 1 1.1 簡介 1 1.2 文獻回顧 4 1.3研究動機與目的 20 第2章 原理 21 2.1 電雙層 (Electric double layer,EDL) 21 2.2 離子選擇性 (Ion selectivity) 28 2.3 逆電透析 (Reverse electrodialysis,RED) 31 2.4 熱電效應 (Thermoelectric effect) 35 第3章 實驗材料與方法 39 3.1 實驗儀器 39 3.2 實驗材料 47 3.3 氧化石墨烯奈米通道薄膜製做 49 3.4 材料分析 50 3.5 實驗材料製備 51 3.6 實驗裝置製做 53 3.7 實驗量測與系統架設 54 第4章 結果分析與討論 58 4.1 氧化石墨烯薄膜鑑定分析 58 4.2 氧化石墨烯薄膜通道電性量測 61 4.3 氧化石墨烯薄膜逆電透析量測 66 4.4 實驗結果分析與討論 72 第5章 結論與未來展望 82 5.1 結論 82 5.2 未來展望 83 參考文獻 84

    [1] BP公眾有限公司 and 妙盈科技,世界能源消耗,(2022).
    [2] Y. Mei and C.Y. Tang. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 425, 156-174,(2018).
    [3] B.E. Logan and M. Elimelech. Membrane-based processes for sustainable power generation using water. Nature 488(7411), 313-319,(2012).
    [4] H. Tian, Y. Wang, Y. Pei, and J.C. Crittenden. Unique applications and improvements of reverse electrodialysis: A review and outlook. Applied Energy 262, 114482,(2020).
    [5] 張洪維. 壓力驅動流動電流於氧化石墨烯奈米通道之研究. 成功大學工程科學系學位論文 1-65,(2019).
    [6] 黃偉豪. 二維材料奈米管道薄膜應用於滲透能源轉換之探討. 成功大學工程科學系學位論文 1-84,(2020).
    [7] 黃敬恩. 氧化石墨烯奈米通道薄膜之離子熱電響應研究. 成功大學工程科學系學位論文 1-86,(2021).
    [8] D.L. Gin and R.D. Noble. Designing the Next Generation of Chemical Separation Membranes. Science 332(6030), 674-676,(2011).
    [9] J. Ma, D. Ping, and X. Dong. Recent Developments of Graphene Oxide-Based Membranes: A Review. Membranes 7(3), 52,(2017).
    [10] K.P. Lee, T.C. Arnot, and D. Mattia. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science 370(1), 1-22,(2011).
    [11] M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart. Carbon Nanotubes: Present and Future Commercial Applications. Science 339(6119), 535-539,(2013).
    [12] R.K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, and Y. Nishina. Graphene oxide: the new membrane material. Applied Materials Today 1(1), 1-12,(2015).
    [13] S.C. O’Hern, M.S.H. Boutilier, J.-C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, and R. Karnik. Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes. Nano Letters 14(3), 1234-1241,(2014).
    [14] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, and A.K. Geim. Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science 335(6067), 442-444,(2012).
    [15] Y. Han, Z. Xu, and C. Gao. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials 23(29), 3693-3700,(2013).
    [16] E. Aliyev, V. Filiz, M.M. Khan, Y.J. Lee, C. Abetz, and V. Abetz. Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials 9(8), 1180,(2019).
    [17] J.-Q. Huang, T.-Z. Zhuang, Q. Zhang, H.-J. Peng, C.-M. Chen, and F. Wei. Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Nano 9(3), 3002-3011,(2015).
    [18] H.M. Hegab and L. Zou. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. Journal of Membrane Science 484, 95-106,(2015).
    [19] G. Rinaldi. Nanoscience and Technology: A Collection of Reviews from Nature Journals. Assembly Automation 30(2), (2010).
    [20] W.S. Hummers Jr and R.E. Offeman. Preparation of graphitic oxide. Journal of the american chemical society 80(6), 1339-1339,(1958).
    [21] A. Edgar Jimenez‐Cervantes, L.B. Juventino, M.H. Ana Laura, and V.S. Carlos, Graphene‐Based Materials Functionalization with Natural Polymeric Biomolecules, in Recent Advances in Graphene Research, N. Pramoda Kumar, Editor. 2016, IntechOpen: Rijeka. p. Ch. 12.
    [22] L. Yang, X. Xiao, S. Shen, J. Lama, M. Hu, F. Jia, Z. Han, H. Qu, L. Huang, Y. Wang, T. Wang, Z. Ye, Z. Zhu, J. Tang, and J. Chen. Recent Advances in Graphene Oxide Membranes for Nanofiltration. ACS Applied Nano Materials 5(3), 3121-3145,(2022).
    [23] M. Elimelech, W.H. Chen, and J.J. Waypa. Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination 95(3), 269-286,(1994).
    [24] K. Morikawa, K. Mawatari, M. Kato, T. Tsukahara, and T. Kitamori. Streaming potential/current measurement system for investigation of liquids confined in extended-nanospace. Lab on a Chip 10(7), 871-875,(2010).
    [25] L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng, J. Yang, X. Zhang, N. Li, W. Guo, and L. Jiang. Anomalous channel‐length dependence in nanofluidic osmotic energy conversion. Advanced Functional Materials 27(9), 1604302,(2017).
    [26] M. Li, S. Li, W. Cao, W. Li, W. Wen, and G. Alici, Microfluidics and Nanofluidics. 2012, Springer-Verlag.
    [27] D.-K. Kim, C. Duan, Y.-F. Chen, and A. Majumdar. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluidics and Nanofluidics 9(6), 1215-1224,(2010).
    [28] B.D. Kang, H.J. Kim, M.G. Lee, and D.-K. Kim. Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores. Energy 86, 525-538,(2015).
    [29] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, and A. Radenovic. Single-layer MoS2 nanopores as nanopower generators. Nature 536(7615), 197-200,(2016).
    [30] C. Wang, E. Choi, and J. Park. High-voltage nanofluidic energy generator based on ion-concentration-gradients mimicking electric eels. Nano Energy 43, 291-299,(2018).
    [31] B. Kang, H.J. Kim, and D.-K. Kim. Membrane electrode assembly for energy harvesting from salinity gradient by reverse electrodialysis. Journal of Membrane Science 550, 286-295,(2018).
    [32] Y. He, Q. Zhang, H. Cheng, Y. Liu, Y. Shu, Y. Geng, Y. Zheng, B. Qin, Y. Zhou, S. Chen, J. Li, M. Li, G.O. Odunmbaku, C. Li, T. Shumilova, J. Ouyang, and K. Sun. Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K–1. The Journal of Physical Chemistry Letters 13(20), 4621-4627,(2022).
    [33] W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao. Recent development and application of thermoelectric generator and cooler. Applied Energy 143, 1-25,(2015).
    [34] P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng, and J. Zhou. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angewandte Chemie 128(39), 12229-12232,(2016).
    [35] X. He, H. Cheng, S. Yue, and J. Ouyang. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties. Journal of Materials Chemistry A 8(21), 10813-10821,(2020).
    [36] C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng, and G. Chen. Giant thermopower of ionic gelatin near room temperature. Science 368(6495), 1091-1098,(2020).
    [37] T. Li, X. Zhang, S.D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen, and J. Dai. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature materials 18(6), 608-613,(2019).
    [38] K. Chen, L. Yao, and B. Su. Bionic Thermoelectric Response with Nanochannels. Journal of the American Chemical Society 141(21), 8608-8615,(2019).
    [39] J.-P. Hsu, S.-T. Yang, C.-Y. Lin, and S. Tseng. Ionic Current Rectification in a Conical Nanopore: Influences of Electroosmotic Flow and Type of Salt. The Journal of Physical Chemistry C 121(8), 4576-4582,(2017).
    [40] J.-P. Hsu, H.-H. Wu, C.-Y. Lin, and S. Tseng. Ion Current Rectification Behavior of Bioinspired Nanopores Having a pH-Tunable Zwitterionic Surface. Analytical Chemistry 89(7), 3952-3958,(2017).
    [41] Y. Ma, L.-H. Yeh, C.-Y. Lin, L. Mei, and S. Qian. pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Analytical Chemistry 87(8), 4508-4514,(2015).
    [42] J.-P. Hsu, S.-C. Lin, C.-Y. Lin, and S. Tseng. Power generation by a pH-regulated conical nanopore through reverse electrodialysis. Journal of Power Sources 366, 169-177,(2017).
    [43] S. Tseng, Y.-M. Li, C.-Y. Lin, and J.-P. Hsu. Salinity gradient power: Optimization of nanopore size. Electrochimica Acta 219, 790-797,(2016).
    [44] A.M. Benneker, H.D. Wendt, R.G.H. Lammertink, and J.A. Wood. Influence of temperature gradients on charge transport in asymmetric nanochannels. Physical Chemistry Chemical Physics 19(41), 28232-28238,(2017).
    [45] R. Long, Z. Kuang, Z. Liu, and W. Liu. Temperature regulated reverse electrodialysis in charged nanopores. Journal of Membrane Science 561, 1-9,(2018).
    [46] U.R. Farooqui, A.L. Ahmad, and N.A. Hamid. Graphene oxide: A promising membrane material for fuel cells. Renewable and Sustainable Energy Reviews 82, 714-733,(2018).
    [47] R.B. Schoch, J. Han, and P. Renaud. Transport phenomena in nanofluidics. Reviews of Modern Physics 80(3), 839-883,(2008).
    [48] K. Xiao, L. Jiang, and M. Antonietti. Ion Transport in Nanofluidic Devices for Energy Harvesting. Joule 3(10), 2364-2380,(2019).
    [49] B. Konkena and S. Vasudevan. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements. The Journal of Physical Chemistry Letters 3(7), 867-872,(2012).
    [50] B.J. Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices. 2010: Cambridge university press.
    [51] S.H. Behrens and D.G. Grier. The charge of glass and silica surfaces. The Journal of Chemical Physics 115(14), 6716-6721,(2001).
    [52] D. Stein, M. Kruithof, and C. Dekker. Surface-Charge-Governed Ion Transport in Nanofluidic Channels. Physical Review Letters 93(3), 035901,(2004).
    [53] T.-C. Tsai, C.-W. Liu, and R.-J. Yang. Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane. Micromachines 7(11), 205,(2016).
    [54] A.J. Bard and L.R. Faulkner. Fundamentals and applications: electrochemical methods. Electrochem. Methods 2(482), 580-632,(2001).
    [55] J. Fair and J. Osterle. Reverse electrodialysis in charged capillary membranes. The Journal of Chemical Physics 54(8), 3307-3316,(1971).
    [56] H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, Q. Doraghi, L. Ahmad, L. Norman, B. Axcell, L. Wrobel, and S. Dai. Thermoelectric generator (TEG) technologies and applications. International Journal of Thermofluids 9, 100063,(2021).
    [57] A. Majee and A. Würger. Collective thermoelectrophoresis of charged colloids. Physical Review E 83(6), 061403,(2011).
    [58] T. Shedlovsky. The activity coefficients of LaCl3, CaCl2, KCl, NaCl and HCl in dilute aqueous solutions. Journal of the American Chemical Society 72(8), 3680-3682,(1950).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE