| 研究生: |
許舜翔 Hsu, Shun-Siang |
|---|---|
| 論文名稱: |
自動化符號選擇方法應用於旅遊景點特徵表示 Automatic Hot Spot Determination and Icon Selection for Tourist Maps |
| 指導教授: |
林昭宏
Lin, Chao-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 數位旅遊地圖 、地圖符號 、影像分類 、資料探勘 |
| 外文關鍵詞: | Digital tourist map, map symbolization, image classification, data mining |
| 相關次數: | 點閱:134 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
旅遊地圖是專門為旅遊者所設計的一種地圖,旅遊者可藉此工具探訪一個地區的熱門景點,因此一個設計良好的地圖對旅遊者而言是非常重要的。然而目前的數位旅遊地圖大多是由現成的電子地圖所改編,旅遊者並無法快速且直觀地獲取熱門景點的位置及其相關資訊,因此,本研究以數位旅遊地圖為研究對象,企圖找尋一種新的旅遊景點符號,來充分表達景點的特色。
目前以地理資訊為導向的影像分享平台(Geo-oriented Photo Sharing Website)日益風行,許多人將旅遊過程中所拍攝的影像上傳到影像分享平台上,例如Google Earth、Panoramio、Flickr等,這些網路平台將影像依據其地理資訊顯示在地圖上,供使用者瀏覽。本研究應用大量具有地理資訊的影像,自動化決定熱門景點的位置,並且選擇一張能充分描述景點特色的影像,作為旅遊地圖上景點的代表符號,其目的在提供旅遊者正確、適當與直觀的旅遊資訊。首先,熱門景點會有大量的旅遊者及拍照影像,因此可假設一個區域內,如果有大量使用者上傳的影像,則該區域可視為一個熱門景點,對此,本研究使用自動化影像分類方法,對影像的地理資訊進行分類,進而擷取出熱門景點的位置。同樣的,在一個景點內,大部分遊客所拍攝的內容都有包含該景點的特色,因此可利用影像分類演算法將同時具有形狀與色彩相似的影像分為同一類,而影像數量最多的類別則可視為含有該景點主要特色之類別,接著,從其中找出一張高品質影像來代表該景點,最後繪製出景點的位置以及其代表影像。實驗結果顯示,本方法可成功的擷取出景點位置及其代表影像,因此,本方法可實現自動化數位旅遊地圖的生成與更新。
Tourist maps are designed for tourists to visit popular hot spots such as scenic places and landmarks in unfamiliar areas. A well-designed tourist map can provide sufficient and intuitive information about hot spots for tourists. Thus, determining hot spots and their icons are important in generating tourist maps. In this paper, an automatic hot spot and icon determination approach is introduced. Compared to the general digital tourist maps that use text, simple shapes, and 3D models as symbols to represent hot spots and simply rebuild from the existing digital maps, we select photos offering abundant visual features of hot spots as image icons and in tourist maps. The photos are automatically extracted from a repository of photos downloaded from online photo-sharing communities, such as Google Earth, Panoramio, and Flickr. Hot spots and their corresponding image icons are determined by a voting strategy and a photo quality assessment approach. The basic idea is to regard each user-uploaded photo as a vote for a popular hot spot. Based on this assumption, an area with many uploaded photos is selected as a hot spot, and a view is captured frequently is regarded as a representative view. The experimental results show that the proposed approach can successfully extract hot spots and visually pleasant images to represent these spots. It demonstrates that our approach is feasible in automatic tourist map generation.
鍾昀寰,影像標記放置最佳化之研究應用於數位旅遊地圖,國立成功大學測量及空間資訊學系,第48-69頁台南,2010。
J. Bertin: Semiology of graphics, University of Wisconsin Press, pp.415, 1983.
M. Bicchierini, A. Davalli, R. Sacchetti, and S. Paganelli: Colorimetric analysis of silicone cosmetic prostheses for upper-limb amputees. Journal of Rehabilitation Research & Development, Vol.42, No.5, pp.655-664, 2005.
A. Bosch, A. Zisserman, and X. Munoz: Representing shape with a spatial pyramid kernel. International Conference on Image and Video Retrieval, Amsterdam, Netherlands, July 9-11, 2007.
J. Canny: A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, pp.679-698, 1986.
W. Cartwright, M. Peterson, and G. Gartner: Multimedia Cartography, Second Edition. Springer Berlin Heidelberg, New York, pp.75-86, 2007.
W. Chen, A. Battestini, N. Gelfand, and V. Setlur: Visual Summaries of Popular Landmarks from Community Photo Collections. Proceedings of the seventeen ACM international conference on Multimedia, Beijing, China, pp.789-792, 2009.
Y. Chen, J. Wang, and R. Krovetz: CLUE: Cluster-Based Retrieval of Images by Unsupervised Learning. IEEE Transactions on Image Processing, Vol. 14, No. 8, pp.1187-1201, 2005.
D. Comaniciu, and P. Meer: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, pp.603-619, 2002.
N. Dalai, B. Triggs, I. Rhone-Alps, and F. Montbonnot: Histograms of oriented gradients for human detection. IEEE Computer Society Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 51, 2005.erence on Multimedia
F. Grabler, M. Agrawala, R. W. Sumner, and M. Pauly: Automatic generation of tourist maps. ACM Transactions on Graphics. Vol. 27, No. 3, Aug. 2008
R. C. Gonzalez and R. E. Woods: Digital image processing, Second Edition, Prentice-Hall, Upper Saddle River, NJ, USA, pp.669 & 438, 2002.
J. Hafner, H. Sawhney, W. Equitz, M. Flickner, and W. Niblack: Efficient Color Histogram Indexing for Quadratic Form Distance Functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 7, pp. 729-736, 1995.
M. L. Hsu: The cartographer's conceptual process and thematic symbolization. Cartography and Geographic Information Science Vol.6, No.2, pp. 117-127, 1979.
W. Kienzle, G. Bakir, M. Franz, and B. Scholkopf: Face Detection - Efficient and Rank Deficient. Advances in Neural Information Processing Systems, Weiss, Y. MIT Press, pp.673-680, Cambridge, MA, USA, 2005.
M. J. Kraak and A. Brown: Web Cartography. Taylor & Francis, New York, pp.96-101, 2001.
S. Lazebnik, C. Schmid, and J. Ponce: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. IEEE Computer Society International Conference on Computer Vision and Pattern Recognition, New York, USA, June 17-22, 2006.
S. Lloyd: Least squares quantization in PCM. IEEE Transactions on Information Theory Vol.28, No.2, pp.129-137, 1982.
A. M. MacEachren: How maps work: representation, visualization, and design, Guilford Pubn, New York, pp.244-269, 1995.
J. B. MacQueen: Some methods for classification and analysis of multivariate observations, Western Management Science Institute, University of California Los Angeles, 1966.
G. Pass, R. Zabih, and J. Miller: Comparing images using color coherence vector. Proceeding of ACM Multimedia 96, Boston, MA, pp.65-73, 1996.
A. H. Robinson, J. L. Morrison, P. C. Muehrcke, A. J. Kimerling, and S. C. Guptill: Elements of Cartography, 6th Edition, John Willey & Sons, New York, pp.272-274, 479-480, 1995.
E. Reinhard, M. Ashikhmin, B. Gooch, and P, Shirley: Color Transfer between Images. IEEE Computer Graphics and Applications, Vol. 21, No. 5, pp.34-41, 2001.
N. Snavely, S. M. Seitz, and R. Szeliski: Photo tourism: Exploring photo collections in 3D. SIGGRAPH Conf. Proc., pp.835-846, 2006.
J. Shi, and J. Malik: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp.888-905, 2000.
I. Simon, N. Snavely, and S. M. Seitz: Scene Summarization for Online Image Collections. IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007.
N. Snavely, S. M. Seitz, and R. Szeliski: Photo tourism: Exploring photo collections in 3D. SIGGRAPH Conf. Proc., Boston, MA, USA, pp. 835-846, 2006.