| 研究生: |
吳宜庭 Wu, Yi-Ting |
|---|---|
| 論文名稱: |
戶外遮蔽材料之熱環境特徵及熱舒適效益 Thermal environment characteristics and thermal comfort benefit of outdoor shading materials |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 遮蔽材料 、熱舒適 、PET 、CFD |
| 外文關鍵詞: | Shading material, thermal comfort, PET, CFD |
| 相關次數: | 點閱:136 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今氣候變遷,導致台灣氣候變化劇增,極端暴雨、都市內高低溫變化,皆是衝擊人們於戶外休憩舒適度的主要因素,人們為了滿足在空間環境上的舒適,建置更多的室內休憩環境以解決氣候對人們的影響,以增加能源使用的手法提高人體對環境的舒適性感受,而在能源生產無法與環境達成平衡的情形下,對環境會是另一種破壞,因此針對戶外調適熱環境的手法,為了不惡性循環,也減少對生態環境的破壞,使用優良的建築材料是一項重要的議題,然而傳統於戶外遮陽使用的材料,多數材料性質耐候性差且設計感不佳造成的都市美觀破壞、還增加更多的都市蓄熱。
故本研究將探討戶外空間水平遮蔽材料對環境調適的效益與人體舒適度影響,以遮蔽材料下陰影處的空氣溫度、地表表面溫度、平均輻射溫度(Tmrt)與生理等效溫度(PET)變化比較為主,藉由現場量測、CFD模擬及使用魚眼相片探討遮蔽材料對熱環境溫度變化,利用實測數據以統計分析出各遮蔽材料和模擬結果驗證,提出遮蔽材料對戶外環境調適的較佳方案。
研究結果得知,對戶外環境架設遮蔽材料都可以調適熱環境的溫度,但能有效遮擋熱與提升人體舒適度的遮蔽材料,以橘色流蘇遮光網、鋁板與金屬擴張網遮蔽材料為佳,該材料能減低環境地表蓄熱,測出的空氣溫度、平均輻射溫度與人體體感溫度都優於其他遮蔽材料,平均可降低環境平均輻射溫度7~8℃,而淺綠色塑膠採光浪板的透光性高導致遮蔽效果不佳,平均降低環境平均輻射溫度6.8℃,空氣溫度、平均輻射溫度皆為全部材料中溫度最高降溫最少,間接也影響人體體感溫度的舒適度。
Global climate change, global warming, and extreme weather have engendered considerable changes in weather. To solve the problem of high outdoor temperatures, developing shelters that combine shading effects and aesthetics is highly crucial. In recent years, development projects in Taiwan and overseas have increasingly used expanded steel meshes as a design element for building exteriors and outdoor shading. However, compared with other shading materials, expanded steel meshes do not easily retain heat on their surfaces, and the top openings also enable maintaining the wind circulation of the enviroment.
In this study ,examined the benefits of shading materials that are horizontally set up in outdoor environments to adjust heat for maintaining a comfortable environment. An instrument was set up on the surface of the shading material, in shaded areas, and open areas to measure the air temperature, radiation temperature, and surface temperature. The collected data were sorted and analyzed. And questionnaire , CFD simulation and use of fisheye photos to investigate the comfort changes of the masking material to the thermal environment.
According to the study results, If used the shading material , it can effectively improved environmental temperatures.The aluminum sheet, expanded metal mesh, and orange tassel shading net materials could more effectively reduce the temperatures of an outdoor thermal environment. It could reduce temperatures by 7 to 8 °C. The light green corrugated plastic sheet showed less temperature reduction than did the other materials.It reduced the temperature by 6.8 °C; therefore, establishing the light green corrugated plastic sheet attained no evident effect on adjusting the outdoor thermal environment.
1. ASHRAE. (2010). Standard 55-2010:“Thermal Environmental Conditions for Human Occupancy”; ASHRAE. Atlanta USA.
2. Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52(4), 281-290.
3. Lin, T. P., Tsai, K. T., Hwang, R. L., & Matzarakis, A. (2012). Quantification of the effect of thermal indices and sky view factor on park attendance. Landscape and Urban Planning, 107(2), 137-146.
4. Lin, T. P., Tsai, K. T., Liao, C. C., & Huang, Y. C. (2013). Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Building and Environment, 59, 599-611.
5. Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43(2), 71-75.
6. Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43(2), 76-84.
7. Lin, T. P., Matzarakis, A., & Hwang, R. L. (2010). Shading effect on long-term outdoor thermal comfort. Building and Environment, 45(1), 213-221.
8. Hodder, S. G., & Parsons, K. (2007). The effects of solar radiation on thermal comfort. International journal of biometeorology
9. Fanger, P. O. (1973). Conditions for thermal comfort—a review. In Proceedings of Symposium on Thermal Comfort and Moderate Heat Stress (CIB W45), Garston, UK (pp. 3-15).
10. Gagge, A. P., Fobelets, A. P., & Berglund, L. (1986). A standard predictive index of human response to the thermal environment. ASHRAE Trans.;(United States), 92(CONF-8606125-).
11. Matzarakis, A., & Amelung, B. (2008). Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In Seasonal forecasts, climatic change and human health (pp. 161-172). Springer, Dordrecht.
12. 上野山明良,&村橋正武.(2013).3 次元シミュレーションによる風の道に関する研究. 都市計画論文集, 48(3), 921-926.
13. IPCC, 2014: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change.
14. 鄭明仁,羅仁豪,&李建鋒.(2009),大學校園戶外環境熱舒適性之實測調查研究,建築學報,(69),1-16.
15. 林憲德(2009),人居熱環境。台北:詹氏書局
16. 黃英哲(2011),公園之遮蔽程度及熱環境對民眾參與行為之影響,虎尾科技大學休閒遊憩研究所學位論文,1-125.
17. 唐琳雅(2017),校園空調型教室熱舒適調查及戶外熱環境模擬,成功大學建築學系學位論文,1-65.
18. 林子平(2007),熱濕氣候區戶外熱舒適接受範圍與環境設計對策,「兩岸三地都市微氣候評估研討會論文集」,台南,pp.77-82。
19. 楊馨茹(2018),社區戶外熱環境評估及調適策略,成功大學建築學系學位論文,1-105.
20. 連筱琪(2013),都市開放空間熱舒適性與使用者行為之觀察與探討,中興大學景觀與遊憩碩士學位學程學位論文,1-63.
21. 林建勳(2017),金屬擴張網應用於陽台綠化之系統開發,成功大學建築學系學位論文,1-65.