| 研究生: |
林洋平 Lin, Yang-Ping |
|---|---|
| 論文名稱: |
利用分子動力學模擬溫度對單壁開口奈米碳錐的拉伸與壓縮行為的影響 Study of Temperature Effects on Tensile and Compressive Behavior of Single-Walled Open-Ended Carbon Nanocone |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 單壁開口奈米碳錐 、分子動力學模擬方法 、拉伸行為 、壓縮行為 |
| 外文關鍵詞: | single-walled open-ended carbon nanocone, molecular dynamics simulation method, tensile behavior, compressive behavior |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係針對單壁開口奈米碳錐進行研究。首先在研究中建立模擬系統,並以分子動力學模擬方法為基礎,來為單壁開口奈米碳錐建立模擬模型。模擬時使用Tersoff位勢能函數來模擬碳分子間的相互作用。本研究以頂尖角為19.2°的單壁開口奈米碳錐為例,在拉伸行為與壓縮行為的研究中,藉由連續施加位移於其位移層,直至其本體發生斷裂或挫曲為止。本研究包含下列工作項目:(1)探究單壁開口奈米碳錐受溫度影響下的拉伸及壓縮行為,(2)探究單壁開口奈米碳錐受長度影響下的拉伸及壓縮行為,以及(3)探究單壁開口奈米碳錐受頂尖角影響下的拉伸及壓縮行為。
由模擬結果可知,對於單壁開口奈米碳錐的拉伸行為,將其幾何參數固定,當溫度升高時,則可承受的應變能及可承受的軸向力隨之降低;而將其溫度固定,當長度增加時,則可承受的應變能隨之降低及可承受的軸向力隨之升高;當頂尖角增加時,則可承受的應變能隨之降低及可承受的軸向力隨之升高。而對於單壁開口奈米碳錐的壓縮行為,將其幾何參數固定,當溫度升高時,則可承受的應變能隨之降低且溫度愈高愈不明顯,以及可承受的軸向力隨之降低且溫度愈高愈不明顯;而將其溫度固定,當長度增加時,則可承受的應變能隨之降低,以及可承受的軸向力由大到小依序為40 、60 、50 長度之碳錐;當頂尖角增加時,則可承受的應變能隨之降低,以及可承受的軸向力隨之降低。
This study focuses on the temperature effects on tensile and compressive behavior of the single-walled open-ended carbon nanocones. A simulation system model was built by using software based on the molecular dynamics simulation method. This study uses the Tersoff potential function to simulate the interaction between carbon atoms. Single-walled open-ended carbon nanocones with the apex angle of 19.2 degree were illustrated.
This study mainly includes three items as follows:
1. To investigate the temperature effect on the tensile and compressive behavior of the single-walled open-ended carbon nanocone.
2. To inspect the length effect on the tensile and compressive behavior of the single-walled open-ended carbon nanocone.
3. To examine the apex angle effect on the tensile and compressive behavior of the single-walled open-ended carbon nanocone.
The simulation results tell us that, for the tensile behavior of a single-walled open-ended carbon nanocone with the geometry parameter fixed, the deformation and strength decreased when the temperature increased; the deformation decreased and the strength increased when the length increased in case of the temperature fixed; the deformation decreased and the strength increased when the apex angle increased. In addition, for the compressive behavior of the single-walled open-ended carbon nanocone with the geometry parameter fixed, the deformation and strength decreased when the temperature increased; the deformation decreased when the length increased in case of the temperature fixed. Moreover, the deformation decreased and the strength decreased when the apex angle increased.
[1] S. Iijima, “Helical microtubules of graphitic carbon, ” Nature, Vol.354, pp.56-58, 7 Nov. 1991.
[2] D. Ugarte, “Curling and closure of graphitic networks under electron-beam irradiation, ” Nature, Vol.359, pp.707-709, 22 Oct. 1992.
[3] Y. Saito and T. Matsumoto, “Carbon nano-cages created as cubes, ” Nature, Vol.392, pp.237-238, 19 Mar. 1998.
[4] Y. Saito, K. Nishikubo, K. Kawabata, and T. Matsumoto, “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, lr, Pt) by arc discharge, ” J. Appl. Phys., Vol.80, No.5, pp.3062-3067, 1 Sep. 1996.
[5] M. Ge and K. Sattler, “Observation of fullerene cones, ” Chem. Phys. Lett., Vol.220, No.3-5, pp.192-196, 1 Apr. 1994.
[6] A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, and T. W. Ebbesen, “Graphitic cones and the nucleation of curved carbon surfaces, ” Nature, Vol.388, pp.451-454, 31 Jul. 1997.
[7] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60:buckminsterfullerene, ” Nature, Vol.318, pp.162-163, 14 Nov. 1985.
[8] J. A. Jaszczak, G. W. Robinson, S. Dimovski, and Y. Gogotsi, “Naturally occurring graphite cones, ” Carbon, Vol.41, pp.2085-2092, 2003.
[9] G. Zhang, X. Jiang, and E. Wang, “Tubular graphite cones, ” Science, Vol.300, pp.472-474, 18 Apr. 2003.
[10] J. J. Li, C. Z. Gu, Q. Wang, P. Xu, Z. L. Wang, Z. Xu, and X. D. Bai, “Field emission from high aspect ratio tubular carbon cones grown on gold wire, ” Appl. Phys. Lett., Vol.87, 143107(pp.1-3), 2005.
[11] L. H. Chen, J. F. AuBuchon, A. Gapin, C. Daraio, P. Bandaru, S. Jin, D. W. Kim, I. K. Yoo, and C. M. Wang, “Control of carbon nanotube morphology by change of applied bias field during growth, ” Appl. Phys. Lett., Vol.85, No.22, pp.5373-5375, 29 Nov. 2004.
[12] N. G. Shang and X. Jiang, “Large-sized tubular graphite cones with nanotube tips, ” Appl. Phys. Lett., Vol.87, 163102(pp.1-3), 2005.
[13] Q. Yang, W. Chen, C. Xiao, A. Hirose, and R. Sammynaiken, “Simultaneous growth of well-aligned diamond and graphitic carbon nanostructures through graphite etching, ” Diam. Relat. Mat., Vol.14, pp.1683-1687, 2005.
[14] H. Park, S. Choi, S. Lee, and K. H. Koh, “Formation of graphite nanocones using metal nanoparticles as plasma etching masks, ” J. Vac. Sci. Technol. B, Vol.22, No.3, pp.1290-1293, May/Jun. 2004.
[15] S. P. Jordan and V. H. Crespi, “Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object, ” Phys. Rev. Lett., Vol.93, 255504(pp.1-4), 17 Dec. 2004.
[16] O. A. Shenderova, B. L. Lawson, D. Areshkin, and D. W. Brenner, “Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled from nanocones, ” Nanotechnology, Vol.12, pp.191-197, 2001.
[17] Sérgio Azevedo, “Effect of substitutional atoms in carbon nanocones, ” Phys. Lett. A, Vol.325, pp.283-286, 2004.
[18] I. C. Chen, L. H. Chen, A. Gapin, S. Jin, L. Yuan, and S. H. Liou, “Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging, ” Nanotechnology, Vol.19, 075501(pp.1-5), 2008.
[19] J. X. Wei, K. M. Liew, and X. Q. He, “Mechanical properties of carbon nanocones, ” Appl. Phys. Lett., Vol.91, 261901(pp.1-3), 2007.
[20] P. C. Tsai and T. H. Fang, “A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones, ” Nanotechnology, Vol.18, 105702(pp.1-7), 2007.
[21] C. Wei and D. Srivastava, “Nanomechanics of carbon nanofibers: structural and elastic properties, ” Appl. Phys. Lett., Vol.85, No.12, pp.2208-2210, 20 Sep. 2004.
[22] S. Zhang, Z. Yao, S. Zhao, and E. Zhang, “Buckling and competition of energy and entropy lead conformation of single-walled carbon nanocones, ” Appl. Phys. Lett., Vol.89, 131923(pp.1-3), 2006.
[23] J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport processes. IV. the equations of hydrodynamics, ” J. Chem. Phys., Vol.18, No.6, pp.817-829, Jun. 1950.
[24] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines, ” J. Chem. Phys., Vol.21, No.6, pp.1087-1092, Jun. 1953.
[25] B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system, ” J. Chem. Phys., Vol.27, No.5, pp.1208-1209, 1957.
[26] B. J. Alder and T. E. Wainwright, “Studies in molecular dynamics. I. general method, ” J. Chem. Phys., Vol.31, No.2, pp.459-466, Aug. 1959.
[27] L. A. Girifalco and V. G. Weizer, “Application of the morse potential function to cubic metals, ” Phys. Rev., Vol.114, No.3, pp.687-690, 1 May 1959.
[28] Rahman, “Correlations in the motion of atoms in liquid argon, ” Phys. Rev., Vol.136, No.2A, pp.A405-A411, 19 Oct. 1964.
[29] L. Verlet, “Computer ‘experiments’ on classical fluids. II. equilibrium correlation functions, ” Phys. Rev., Vol.165, No.1, 165(pp.201-214), 5 Jan. 1968.
[30] M. P. Allen and T. J. Tildesley, “Computer simulation of liquids, ” Oxford: Clarendon, 1970.
[31] A. Quentrec and C. Brot, “New method for searching for feighbors in molecular dynamics computations, ” J. Comput. Phys., Vol.13, No.3, pp.430-432, Nov. 1973.
[32] D. C. Rapaport, “Large-scale molecular dynamics simulation using vector and parallel computers, ” Comput. Phys. Rep., Vol.9, No.1, pp.1-53, Dec. 1988.
[33] G. S. Grest, B. Dünweg, and K. Kremer, “Vectorrized link cell fortran code for molecular dynamics simulations for a large number of particles, ” Comput. Phys. Commun., Vol.55, pp.269-285, 1989.
[34] K. T. Lim, S. Brunett, M. Iotov, R. B. Mcclurg, N. Vaidehi, S. Dasgupta, S. Taylor, and W. A. Goddard III, “Molecular dynamics for very large systems on massively parallel computers: the MPSim program, ” J. Comput. Chem., Vol.18, No.4, pp.501-521, 1997.
[35] D. Roccatano, R. Bizzarri, G. Chillemi, N. Sanna, and A. D. Nola, “Development of a parallel molecular dynamics code on SIMD computers: algorithm for use of pair list criterion, ” J. Comput. Chem., Vol.19, No.7, pp.685-694, 1998.
[36] S. Toyota, H. Miyagawa, K. Kitamura, T. Amisaki, E. Hashimoto, H. Ikeda, A. Kusumi, and N. Miyakawa, “Development of MD engine: high-speed accelerator with parallel processor design for molecular dynamics simulations, ” J. Comput. Chem., Vol.20, No.2, pp.185-199, 1999.
[37] W. K. Liu, E. G. Karpov, and Harold S. Park, “Nano mechanics
and materials: theory, multiscale methods and applications, ”
Willy, 2006.
[38] J. Tersoff, “New empirical model for the structural properties of silicon, ” Phys. Rev. Lett., Vol.56, No.6, pp.632-635, 10 Feb. 1986.
[39] J. Tersoff, “New empirical approach for the structure and energy of covalent systems, ” Phys. Rev. B, Vol.37, No.12, pp.6991-7000, 15 Apr. 1988-ΙΙ.
[40] J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties, ” Phys. Rev. B, Vol.38, No.14, pp.9902-9905, 15 Nov. 1988-Ι.
[41] J. Tersoff, “Empirical interatomic potential for carbon, with applications to amorphous carbon, ” Phys. Rev. Lett., Vol.61, No.25, pp.2879-2882, 19 Dec. 1988.
[42] J. Tersoff, “Modeling solid-state chemistry: interatomic potentials for multicomponent systems, ” Phys. Rev. B, Vol.39, No.8, pp.5566-5568, 15 Mar. 1989-Ι.
[43] G. C. Abell, “Empirical chemical pseudopotential theory of molecular and metallic bonding, ” Phys. Rev. B, Vol.31, No.10, pp.6184-6196, 15 May 1985.
[44] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters, ” J. Chem. Phys., Vol.76, No.1, pp.637-649, 1 Jan. 1982.
[45] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath, ” J. Chem. Phys., Vol.81, No.8, pp.3684-3690, 15 Oct. 1984.
[46] K. M. Liew, J. X. Wei, and X. Q. He, “Carbon nanocones under compression: buckling and post-buckling behaviors, ” Phys. Rev. B, Vol.75, 195435(pp.1-6), 2007.