簡易檢索 / 詳目顯示

研究生: 楊宏基
Yang, Hong-Ji
論文名稱: 應用分數順序統計量於超越機率準則下之非參數製程監控:從單變量至多變量管制圖設計
The Use of Fractional Order Statistics in Nonparametric Process Monitoring with the Exceedance Probability Criterion: From Univariate to Multivariate Control Chart Design
指導教授: 李俊毅
Li, Chung-I
陳瑞彬
Chen, Ray-Bing
學位類別: 博士
Doctor
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 97
中文關鍵詞: 超越機率準則非參數製程監控分數順序統計量尾端外推分位數估計自適性分數順序統計量多變量管制圖空間深度離群程度度量第一階段分析
外文關鍵詞: Exceedance Probability Criterion, Nonparametric Process Monitoring, Fractional Order Statistics, Tail-Extrapolated Quantile Estimation, Adaptive FOS, Multivariate Control Charts, Spatial Depth, Outlyingness Measures, Phase I Analysis
相關次數: 點閱:73下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑑於傳統管制圖高度依賴嚴格分布假設與大量Phase I 初期樣本,導致在實務應用上因樣本不足常面臨缺乏可靠性的問題。為了解決這個問題本論文以超越機率準則(Exceedance Probability Criterion, EPC)為核心,建立一套完整且具理論基礎的非參數統計製程監控的方法,該方法除了具有高度穩健性且無須分布假設優點外,且其適用於小至中等樣本情境下之製程監控。

    為此,本研究提出一類新型EPC 相容之管制圖設計,利用分數順序統計量(Fractional Order Statistics, FOS)進行外推分位數估計,並具備理論基礎。所開發之三種方法分別為:經典FOS、具自適性激活函數的ad-FOS,以及三項式FOS(3-term FOS)方法,均可透過解析式推導出滿足指定涵蓋機率之管制界限,且能廣泛適用於多種分布特性下,大幅提升相較於傳統非參數與參數方法之優勢。

    本論文進一步將該方法論擴展至多變量製程監控領域,透過創新性地將空間深度(Spatial Depth)轉換為連續離群程度(Outlyingness Measure),克服傳統深度排序值方法中離散性問題。並提出一套二階段分位數估計流程,以有效建構高維空間下之EPC 型上界管制界限。

    透過大量模擬實驗及實際半導體製程案例驗證,本研究所提出方法於涵蓋準確度、模型誤設適應性及複雜數據結構的彈性表現上,均展現顯著優勢。整體而言,本論文推進了非參數製程監控領域之發展,建立了一套兼具統一性、彈性與理論嚴謹性的完整方法論,特別適用於樣本數有限、分布形式未知之工業應用場域。

    This dissertation establishes a comprehensive and analytically grounded methodology for nonparametric statistical process monitoring under the Exceedance Probability Criterion (EPC). Motivated by the practical limitations of traditional control charts—particularly their heavy reliance on strong distributional assumptions and large Phase I sample sizes—this research addresses the pressing need for robust, distribution-free approaches capable of delivering reliable control limits even under small to moderate sample conditions.

    To achieve this, a new class of EPC-compliant control charts is introduced, leveraging fractional order statistics (FOS) to develop extrapolated quantile estimators with theoretical properties. Three variants are systematically developed: the classic FOS, the adaptive FOS (ad-FOS), and the 3-term FOS methods. These estimators provide analytic solutions for constructing control limits that satisfy pre-specified coverage guarantees across a wide range of distributional characteristics, offering significant advantages over conventional nonparametric and parametric techniques.

    The methodology is further extended to multivariate process monitoring through a novel transformation of spatial depth into continuous outlyingness measures, overcoming the discreteness inherent in traditional depth-based approaches. A two-stage quantile estimation framework is proposed to enable the construction of multivariate EPC-based control limits, ensuring both scalability and accuracy in high-dimensional settings.

    Extensive simulation studies and real-world applications, particularly involving semiconductor manufacturing processes, validate the superior performance of the proposed methods in terms of coverage accuracy, robustness against model misspecification, and adaptability to complex data structures. Collectively, this research advances the state of nonparametric process monitoring by providing a unified, flexible, and theoretically rigorous framework that is especially well-suited for industrial environments characterized by limited sample sizes and unknown distributional forms.

    摘要i Abstract ii 誌謝iii Table of Contents iv List of Tables vi List of Figures vii Nomenclature ix Chapter 1. General Introduction 1 Chapter 2. Univariate Control Charts 3 2.1. Literature Review and Discussion 3 2.1.1. Exceedance Probability Criterion (EPC) 4 2.1.2. Parametric Approach with Exceedance Probability Criterion and Limitations 7 2.1.3. Nonparametric GSD method and Limitations 10 2.2. Fractional Order Statistics (FOS) and Quantile Estimation 11 2.3. Three Proposed FOS-Based Methods 14 2.3.1. Preliminary Concepts 14 2.3.2. Classic FOS Method 17 2.3.3. Adaptive FOS (ad-FOS) Method 17 2.3.4. 3-Term FOS Method 18 2.3.5. Simulation Studies and Performance Evaluation 18 2.4. Discussion of Comparative Results 19 2.5. Cases Studies: Simulation and Real-Word Application 22 2.5.1. Simulation-Based Example 22 2.5.2. Real-World Case Study: Semiconductor manufacturing Processes 27 2.5.3. Case Study: Semiconductor Process Data 27 2.6. Conclusion and Discussion 30 Chapter 3. Multivariate Control Charts 34 3.1. Background and Motivation 34 3.2. Foundational Concepts and Notation 40 3.2.1. Spatial Depth Functions and Outlyingness Metrics 40 3.2.2. Formulating Upper Control Limits via the EPC 43 3.3. Proposed Methodological Framework 45 3.3.1. An Extended Framework for Quantile Estimation Using FOS 45 3.3.2. Designing EPC-based Upper Control Limits via a Two-Stage Approach 47 3.4. Simulation Study and Practical Implementation of EPC-Based Control Limits 50 3.4.1. Interpretation of Simulation Findings 51 3.4.2. Case Studies: Simulation and Real-World Applications 54 3.5. Conclusion and Discussion 60 Chapter 4. Conclusion, Discussion, and Future Research 61 4.1. Concluding Remarks and Methodological Contributions 61 4.2. Discussion: Methodological Implications and Limitations 63 4.3. Directions for Future Research 64 Appendix A. Theoretical foundations for the extended ad-AF method 66 Appendix B. Fine-Tuning ad-AF Hyperparameters for Ensuring EPC Compliance in the ad-FOS Method 70 Appendix C. Fine-Tuning ad-AF Hyperparameters for Ensuring EPC Compliance in the Two-Stage Method 75 References 81

    IAG (2005). Statistical Process Control (SPC)-Reference Manual 2nd edition. Detroit, MI: Automotive Industry Action Group.
    Albers, W. and Kallenberg, W. C. (2004a). Are estimated control charts in control? Statistics, 38(1):67–79.
    Albers, W. and Kallenberg, W. C. (2004b). Estimation in shewhart control charts: effects and corrections. Metrika, 59(3):207–234.
    Albers, W. and Kallenberg, W. C. (2006). Self-adapting control charts. Statistica Neerlandica, 60(3):292–308.
    Albers, W., Kallenberg, W. C., and Nurdiati, S. (2004). Parametric control charts. Journal of Statistical Planning and Inference, 124(1):159–184.
    Albers, W., Kallenberg, W. C., and Nurdiati, S. (2005). Exceedance probabilities for parametric control charts. Statistics, 39(5):429–443.
    Albers, W., Kallenberg, W. C., and Nurdiati, S. (2006). Data driven choice of control charts. Journal of statistical planning and inference, 136(3):909–941.
    Arnold, B. C., Balakrishnan, N., and Nagaraja, H. (1992). A First Course in Order Statistics, volume 54. SIAM.
    Bae, S. J., Do, G., and Kvam, P. (2016). On data depth and the application of nonparametric multivariate statistical process control charts. Applied Stochastic Models in Business and Industry, 32(5):660–676.
    Banfi, F., Cazzaniga, G., and De Michele, C. (2022). Nonparametric extrapolation of extreme quantiles: a comparison study. Stochastic Environmental Research and Risk Assessment, 36(6):1579–1596.
    Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS), 22(4):469–483.
    Becker, C., Fried, R., and Kuhnt, S. (2014). Robustness and complex data structures: festschrift in honour of Ursula Gather. Springer Science & Business Media.
    Becker, M., Klößner, S., and Becker, M. M. (2017). Package `pearsonds'. Australian & New Zealand, 50(2):199–205.
    Brown, L. D., Cai, T. T., and DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical science, 16(2):101–133.
    Cai, T. T. and Wang, H. (2009). Tolerance intervals for discrete distributions in exponential families. Statistica Sinica, 19(3):905–923.
    Capizzi, G. and Masarotto, G. (2020). Guaranteed in-control control chart performance with cautious parameter learning. Journal of Quality Technology, 52(4):385–403.
    Chakraborty, A. and Chaudhuri, P. (2014). The spatial distribution in infinite dimensional spaces and related quantiles and depths. The Annals of Statistics, 42(3):1203–1231.
    Cheng, A. Y., Liu, R. Y., and Luxhøj, J. T. (2000). Monitoring multivariate aviation safety data by data depth: control charts and threshold systems. IIE Transactions, 32(9):861–872.
    Cho, K. S. and Tony Ng, H. K. (2021). Tolerance intervals in statistical software and robustness under model misspecification. Journal of Statistical Distributions and Applications, 8:1–49.
    Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3):291–303.
    Diebold, A. C. (2001). Handbook of silicon semiconductor metrology. CRC Press.
    Does, R. J., Goedhart, R., and Woodall, W. H. (2020). On the design of control charts with guaranteed conditional performance under estimated parameters. Quality and Reliability Engineering International, 36(8):2610–2620.
    Elías, A. and Jiménez, R. (2018). A depth-based method for functional time series forecasting. arXiv preprint arXiv:1806.11032.
    Epprecht, E. K., Loureiro, L. D., and Chakraborti, S. (2015). Effect of the amount of phase i data on the phase ii performance of s 2 and s control charts. Journal of Quality Technology, 47(2):139–155.
    Goedhart, R., Schoonhoven, M., and Does, R. J. (2020). Nonparametric control of the conditional performance in statistical process monitoring. Journal of Quality Technology, 52(4):355–369.
    Goldman, M. and Kaplan, D. M. (2018). Non-parametric inference on (conditional) quantile differences and interquantile ranges, using l-statistics. The Econometrics Journal, 21(2):136–169.
    Hutson, A. D. (1999). Calculating nonparametric confidence intervals for quantiles using fractional order statistics. Journal of Applied Statistics, 26(3):343–353.
    Hutson, A. D. (2002). A semi-parametric quantile function estimator for use in bootstrap estimation procedures. Statistics and Computing, 12(4):331–338.
    Jardim, F. S., Chakraborti, S., and Epprecht, E. K. (2019). Chart with estimated parameters: the conditional arl distribution and new insights. Production and Operations Management, 28(6):1545–1557.
    Jensen, W. A., Jones-Farmer, L. A., Champ, C. W., and Woodall, W. H. (2006). Effects of parameter estimation on control chart properties: a literature review. Journal of Quality technology, 38(4):349–364.
    Jones, M. (2002). On fractional uniform order statistics. Statistics & probability letters, 58(1):93–96.
    Koltchinskii, V. I. (1997). M-estimation, convexity and quantiles. The annals of Statistics, pages 435–477.
    Krishnamoorthy, K. and Mathew, T. (2009). Statistical tolerance regions: theory, applications, and computation. Hoboken, NJ: John Wiley & Sons. Inc.
    Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, pages 405–414.
    Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432):1380–1387.
    Liu, R. Y. and Singh, K. (1993). A quality index based on data depth and multivariate rank tests. Journal of the American Statistical Association, 88(421):252–260.
    Lowry, C. A., Woodall, W. H., Champ, C. W., and Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1):46–53.
    Meeker, W. Q., Hahn, G. J., and Escobar, L. A. (2017). Statistical intervals: a guide for practitioners and researchers. 2nd ed, Hoboken, NJ: John Wiley & Sons. Inc.
    Merlo, J., Cordero-Franco, A. E., and Tercero-Gómez, V. G. (2022). Nonparametric multivariate processes monitoring with guaranteed in-control performance for changes in location. Computers & Industrial Engineering, 166:107940.
    Montgomery, D. C. (2013). Introduction to Statistical Quality Control. 7th ed, Hoboken, NJ: John Wiley & Sons. Inc.
    Mosler, K. and Mozharovskyi, P. (2022). Choosing among notions of multivariate depth statistics. Statistical Science, 37(3):348–368.
    Möttönen, J. and Oja, H. (1995). Multivariate spatial sign and rank methods. Journaltitle of Nonparametric Statistics, 5(2):201–213.
    Mukherjee, A. and Marozzi, M. (2021). Nonparametric phase-ii control charts for monitoring high-dimensional processes with unknown parameters. Journal of Quality Technology, 54(1):44–64.
    Neto, M. R. (2008). The concept of depth in statistics. University of Lisbon, fenix. tecnico. ulisboa. pt/downloadFile/395137801290/paper. pdf.
    Pandolfo, G., Iorio, C., Staiano, M., Aria, M., and Siciliano, R. (2021). Multivariate process control charts based on the l p depth. Applied Stochastic Models in Business and Industry, 37(2):229–250.
    Parzen, E. (1979). Nonparametric statistical data modeling. Journal of the American statistical association, 74(365):105–121.
    Pokotylo, O., Mozharovskyi, P., and Dyckerhoff, R. (2019). Depth and depth-based classification with r package ddalpha. Journal of Statistical Software, 91:1–46.
    Psarakis, S., Vyniou, A. K., and Castagliola, P. (2014). Some recent developments on the effects of parameter estimation on control charts. Quality and Reliability Engineering International, 30(8):1113–1129.
    Qiu, P. (2018). Some perspectives on nonparametric statistical process control. Journal of Quality Technology, 50(1):49–65.
    Saleh, N. A., Mahmoud, M. A., Keefe, M. J., and Woodall, W. H. (2015). The difficulty in designing shewhart x and x control charts with estimated parameters. Journal of Quality Technology, 47(2):127–138.
    Scholz, F. (1995). Nonparametric tail extrapolation. Boeing Information & Support Services ISSTECH-95-014, Seattle, WA.
    Serfling, R. (2002). A depth function and a scale curve based on spatial quantiles. In Statistical data analysis based on the L1-norm and related methods, pages 25–38. Springer.
    Serfling, R. (2004). Nonparametric multivariate descriptive measures based on spatial quantiles. Journal of statistical Planning and Inference, 123(2):259–278.
    Shu, L. and Fan, J. (2018). A distribution-free control chart for monitoring high-dimensional processes based on interpoint distances. Naval Research Logistics (NRL), 65(4):317–330.
    Stigler, S. M. (1977). Fractional order statistics, with applications. Journal of the American Statistical Association, 72(359):544–550.
    Stoumbos, Z. G. and Jones, L. A. (2000). On the properties and design of individuals control charts based on simplicial depth. Nonlinear Studies, 7(2):147–178.
    Stoumbos, Z. G., Jones, L. A., Woodall, W. H., and Reynolds, M. R. (2001). On nonparametric multivariate control charts based on data depth. In Frontiers in Statistical Quality Control 6, pages 207–227. Springer.
    TC69, I. (2013). Applications of statistical methods in process management: ISO 7870-2: 2013-Control charts–Part 2: Shewhart control charts. Switzerland: The International Organization for Standardization.
    Tukey, J. W. (1965). Which part of the sample contains the information? Proceedings of the National Academy of Sciences, 53(1):127–134.
    Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the international congress of mathematicians, volume 2, pages 523–531. Vancouver.
    Vardi, Y. and Zhang, C.-H. (2000). The multivariate l 1-median and associated data depth. Proceedings of the National Academy of Sciences, 97(4):1423–1426.
    Wilks, S. S. (1941). Determination of sample sizes for setting tolerance limits. The Annals of Mathematical Statistics, 12(1):91–96.
    Wilks, S. S. (1962). Mathematical statistics. John Wiley & Sons. Inc.
    Woodall, W. H. (2000). Controversies and contradictions in statistical process control. Journal of quality technology, 32(4):341–350.
    Woodall, W. H. (2017). Bridging the gap between theory and practice in basic statistical process monitoring. Quality Engineering, 29(1):2–15.
    Yang, H.-J. and Li, C.-I. (2025a). Nonparametric control limits incorporating exceedance probability criterion for statistical process monitoring with commonly employed small to moderate sample sizes. Quality Engineering, 37(1):145–161.
    Yang, H.-J. and Li, C.-I. (2025b). A novel class of nonparametric control charts employing the exceedance probability criterion for phase i analysis. Computers & Industrial Engineering, page DOI: 10.1016/j.cie.2025.110881.
    Yang, S.-F., Lin, Y.-C., and Yeh, A. B. (2021). A phase ii depth-based variable dimension ewma control chart for monitoring process mean. Quality and Reliability Engineering International, 37(6):2384–2398.
    Young, D. S. (2010). Tolerance: an r package for estimating tolerance intervals. Journal of Statistical Software, 36(5):1–39.
    Young, D. S. and Mathew, T. (2014). Improved nonparametric tolerance intervals based on interpolated and extrapolated order statistics. Journal of Nonparametric Statistics, 26(3):415–432.
    Zuo, Y. and Serfling, R. (2000).General notions of statistical depth function. The Annals of Statistics, 28(2):461–482.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE