簡易檢索 / 詳目顯示

研究生: 陳杰
Chen, Jie
論文名稱: 探討椅子版瑜珈對平衡能力較差老年人心肺健康的影響
To Explore the Impact of Chair Yoga on Cardiopulmonary Fitness of the Elderly with Poorer Balance Ability.
指導教授: 蔡美玲
Tsai, Mei-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 66
中文關鍵詞: 心肺耐力椅子瑜珈衰弱2分鐘踏步測試中老期高齡者
外文關鍵詞: Cardiopulmonary fitness, Chair Yoga, Frailty, 2-min step test (2-MST), middle-old elderly
相關次數: 點閱:39下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣是於2025年邁向超高齡化社會的高齡社會。老年人口慢性病與功能障礙的盛行率隨年齡而增加,其慢性病引發之死因中,超過一半的原因與心肺功能相關。老化過程中,生理上的調適異常導致衰弱,產生行動功能異常,甚至失能。已知心肺耐力提升與改善高齡者衰弱及失智有關。因此提升高齡者之心肺適能可改善衰弱,進而減緩心肺疾病衍生之併發症。現行中高強度的有氧運動及肌力訓練,不適合平衡能力較差的中老期高齡者(年齡75-84歲)。瑜珈呼吸法在過去的研究中被證實具有提升肺功能的效果,是否能改善高齡者心肺功能值得探索。為彌補中老期高齡者平衡能力較差的問題,本研究改用椅子瑜珈並探討椅子瑜珈對中老期高齡者心肺耐力之影響: 目標1 確認中老期高齡者於休息狀態下的生理參數;目標2- 確認中老期高齡者之行動力;目標3 確認與優化銀髮族之心肺耐力檢測工具;目標4 椅子瑜珈之介入時間對中老期高齡者之心肺耐力的影響;目標5確認椅子瑜珈介入對中老期高齡者之心肺耐力的特定作用;目標6以AI體適能檢測系統確認椅子瑜珈對中老期高齡者之心肺耐力影響。左鎮區招募之中老期高齡者收縮壓為131.1 ± 3.4 (mmHg);用力呼氣肺活量為2.3 ± 0.2 (L);2.44公尺坐立繞物為9.1 ± 0.7 (sec)。進行優化版2分鐘踏步測試,中老期高齡者心率從最大心率的53.1% 提升至最大心率的63.3% (P < 0.0001 ***)。為了確認椅子瑜珈的介入時間對中老期高齡者的影響,將介入前時間點設為T0,持續介入3個月為T1,介入6個月為T2,進行椅子瑜珈介入訓練的中老期高齡者2分鐘踏步測試從64.5 ± 3.2 (T0) 增加到72.9 ± 3.7 (T1) (P = 0.0413 *),完成6個月介入後增加到74.0 ± 3.5 (T2),與T0相比顯著增加(P = 0.0106 *),T1與T2則沒有差異(P = 0.6761)。在椅子瑜珈對中老期高齡者心肺耐力特定作用的研究中,經過椅子瑜珈介入訓練的中老期高齡族群2分鐘踏步測試從54.9 ± 4.3增加到64.8 ± 4.8 (P = 0.0403 *),而30秒椅子坐立測試與30秒二頭肌屈舉測試都沒有顯著差異。而進行下肢復健的組別30椅子坐立測試的次數都增加,但2分鐘踏步測試沒有改變。以AI體適能檢測對椅子瑜珈介入效果進行驗證,進行3個月的練習後,中老期高齡者的2分鐘踏步測試從40.2 ± 7.9提升至64 ± 3.5 (P = 0.0135 *)。結果表明,椅子瑜珈練習3個月可以改善中老期高齡者的心肺耐力,這個作用效果是特定的,且持續練習可以維持介入效果,椅子瑜珈可以做為行動不便與中老期高齡者改善心肺耐力的新選擇。

    Taiwan becomes an aged society in 2025. A negative correlation between the decreased cardiopulmonary fitness and the increased mortality indicated the importance of maintaining cardiopulmonary fitness in the elderly. The development of geriatric syndromes including frailty and mild cognitive impairment (MCI) commonly occurs during aging. The decrease of cardiopulmonary fitness is correlated with increased incidence of frailty and MCI in the senior. Therefore, the measurement and improvement of the senior becomes important. However, the measurement of cardiopulmonary fitness for the seniors is the 2-minute step test (2-MST). The test is not suitable for middle-old elderly (aged 75-84) with poor balance ability. Yoga pranayama is known to improve lung function but it is not clear if Yoga exercise can improve cardiopulmonary fitness for the elderly with poorer balance. According, the study was designed to refine the measurement of cardiopulmonary fitness and explore the effects of chair yoga on cardiopulmonary fitness in middle-old elderly. Six specific aims were included: Aim 1 was to characterize physiological parameters of middle-old elderly at rest, Aim 2 was to characterize the physical ability of middle-old elderly, Aim 3 was to optimize and confirm the cardiopulmonary fitness testing tool suitable for the middle-old elderly, Aim 4 was to explore the time-dependent effects on cardiopulmonary fitness after chair yoga intervention in middle-old elderly, Aim 5 was to confirm the specific effect of chair yoga intervention on cardiopulmonary fitness in middle-old elderly, and Aim 6 was to re-confirm the effects of chair yoga intervention on cardiopulmonary fitness in middle-old elderly by using the in-house developed AI fitness testing system. The results showed that systolic blood pressure in middle-old elderly recruited from Zuojhen District was 131.1 ± 3.4 (mmHg) and forced vital capacity was 2.3 ± 0.2 (L) in Aim 1. The 2.44-meter time up and go test was 9.1 ± 0.7 (sec) in Aim 2. The optimized 2-minute step test caused the increase of the heart rate from 53.1 to 63.3% of maximum heart rate (P < 0.0001 ***) in Aim 3. The time point before intervention was set as T0. After intervention, the 2-minute step test was conducted at 3- and 6- month time points. The step counts were significantly increased at the 3-month time point from 64.5 ± 3.2 (T0) to 72.9 ± 3.7) (P = 0.0413 *) and maintained at the similar level at the 6-month time point (74.0 ± 3.5) in Aim 4. In Group A, the step number of 2-minute step test in the middle-old elderly increased from 54.9 ± 4.3 to 64.8 ± 4.8 (P = 0.0403 *), while the number of 30-sec chair stand test had no effect. In Group B, the stand numbers of 30-sec chair stand test were increase from 11.6 ± 0.9 to 13.1 ± 0.8 (P = 0.0112 *), while the number of 2- min stand test had no effect, and Group C had a similar result in Aim 5. To reconfirm the time dependent effect of chair yoga on cardiopulmonary fitness, the AI fitness testing was used. As indicated, a 3-month intervention with chair Yoga increased the step counts from 40.2 ± 7.9 to 64 ± 3.5 (P = 0.0135 *) in Aim 6. In conclusion a 3- months practices of chair yoga improved cardiopulmonary fitness of the middle-old elderly. Our data suggest that chair-yoga provides a better alternative to improve cardiopulmonary functions of the middle-old elderly.

    中文摘要 I Extended Abstract III 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 文獻回顧 1 1. 台灣高齡社會之老年疾病 1 2. 老年徵候群 1 4. 提升心肺適能的運動 2 5. 檢測心肺適能的方式 4 6. 提升銀髮族心肺適能的運動 5 第二章 研究動機 7 第三章 受試群體與方法 8 1. 受測群體 8 2. 研究設計 8 Aim 1. 確認中老期高齡者於休息狀態下的生理參數 8 Aim 2. 確認中老期高齡者之行動力 8 Aim 3. 確認與優化銀髮族之心肺耐力檢測工具 9 Aim 4. 椅子瑜珈之介入時間對中老期高齡者之心肺耐力的影響 9 Aim 5. 確認椅子瑜珈介入對中老期高齡者之心肺耐力的特定作用 9 Aim 6. 以AI體適能檢測系統確認椅子瑜珈對中老期高齡者之心肺耐力影響 10 3. 招募流程與收案結果 10 3-1. 招募流程 10 3-2. 檢測流程 10 3-3.分析介入成效之排除原則 11 3-4. 招募階段 11 階段一(2023年6月- 2023年8月) : 12 階段二(2023年3月- 2023年5月) : 12 階段三(2021年8月- 2022年5月) : 12 階段四(2023年5月- 2023年10月) : 12 4.介入運動 13 4-1. 椅子瑜珈練習(Chair Yoga exercise) 13 4-2. 下肢肌力訓練(Lower limbs Exercise) 14 4-3. 下肢復健訓練(Lower limbs rehabilitation) 14 4-4. 據點常態性健促活動 14 5. 檢測項目與方法 15 5-1.生理功能檢測 15 5-2.銀髮體適能偵測 15 6. AI檢測 16 7. 計算與統計方式 17 第四章 結果 18 階段一 (2020年6月- 2020年8月)人口資料: 18 Aim 1. 確認中老期高齡者於休息狀態下的生理參數 18 Aim 2. 確認中老期高齡者之行動力 18 階段二(2023年3月- 2023年5月)人口資料: 19 Aim 3. 確認與優化銀髮族之心肺耐力檢測工具 19 階段三(2021年8月- 2022年5月) 人口資料: 20 Aim 4. 椅子瑜珈之介入時間對中老期高齡者之心肺耐力的影響 20 階段四(2023年5月- 2023年10月) 人口資料: 21 Aim 5. 確認椅子瑜珈介入對中老期高齡者之心肺耐力的特定作用 22 Aim 6. 以AI體適能檢測系統確認椅子瑜珈對中老期高齡者之心肺耐力影響 23 第五章 討論 24 1.研究數據總結 24 2. 偏鄉高齡者之生理數據 25 3. 偏鄉高齡者之衰弱與衰弱前期之比例 25 4. 淨化呼吸改善高齡者心肺耐力之可能機轉 25 5. AI用於心肺耐力檢測之優缺點分析 26 6. 本研究之限制 27 第六章 參考文獻 28 附件一 51 附件二 52 附件三 53   表目錄 表一、中老期高齡族群與青年族群心肺功能與人口資料 34 表二、中老期高齡族群與青年族群體適能資料 35 表三、中老期高齡者30-sec arm curl test前後的心血管數據資料 36 表四、中老期高齡者30-sec chair stand test前後的心血管數據資料 37 表五、中老期高齡者進行四腳輔助椅之2-min step test前後的心血管數據資料 38 表六、6個月介入中老期高齡者人口數據資料 39 表七、中老期高齡者進行6個月椅子瑜珈介入隨著時間體適能改變 (Group A) 40 表八、中老期高齡者進行6個下肢肌力訓練隨著時間體適能改變 (Group B) 41 表九、三種介入中老期高齡者人口數據資料 42 表十、中老期高齡者進行3個月椅子瑜珈的下肢肌耐力與心肺耐力改變(A據點) 43 表十一、中老期高齡者進行3個月下肢復健的下肢肌耐力與心肺耐力改變(B據點) 43 表十二、中老期高齡者進行3個月健促活動的下肢肌耐力與心肺耐力改變(C據點) 43 表十三、30-sec arm curl test在三個月介入前後的AI與人工計數比較 44 表十四、30-sec chair stand test在3個月介入前後的AI與人工計數比較 44 表十五、2-min step test在3個月介入前後的AI與人工計數比較 45   圖目錄 圖一、階段三中老期高齡者運動介入及偵測流程圖 46 圖二、階段四中老期高齡者運動介入及偵測流程圖 47 圖三、使用四腳輔助器及iMirror進行2-MST檢測 48 圖四、運動前後由檢測員量測血壓與配戴AR眼鏡避免運動風險 49 圖五、由電腦配合可動式鏡頭增加環境適應性 50

    內政部. (2022, August 19). 110年國人平均壽命80.86歲. Retrieved from https://www.moi.gov.tw/News_Content.aspx?n=4&sms=9009&s=264811.
    邱敬家. (2022). Covid-19疫情下長期介入椅子版拜日式與淨化呼吸瑜珈練習改善老年人之體適能和心率變異之探討. [碩士論文,國立成功大學]. 台灣碩博士論文加值系統. https://hdl.handle.net/11296/vqhg77.
    陳慶餘. (2015). 台灣老年衰弱症的研究與應用. 長期照護雜誌, 19(2), 137–148. doi:10.6317/LTC.19.137.
    陳鴻文. (2023). A2Fitness:結合AR智慧眼鏡用於高齡者體適能運動之人工智慧輔助系統. [碩士論文,南臺科技大學].台灣碩博士論文加值系統. https://hdl.handle.net/11296/v9yp3c.
    國家發展委員會. (2023, August).高齡化時程. Retrieved from https://www.ndc.gov.tw/Content_List.aspx?n=D527207EEEF59B9B.
    劉書綮 (2022). ElderFit:以骨架辨識技術為基礎之高齡者體適能運動評估系統之設計與實現. [碩士論文,南臺科技大學]. 台灣碩博士論文加值系統. https://hdl.handle.net/11296/w97dpw.
    衛生福利部. (2023a, May 8). 健康平均餘命. Retrieved from https://dep.mohw.gov.tw/DOS/cp-5082-55400-113.html。
    衛生福利部. (2023b, June 12). 111年國人死因統計結果. Retrieved from https://www.mohw.gov.tw/cp-16-74869-1.html.
    American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Philadelphia, PA: Wolters Kluwer; 2018.
    Ashikali, E. M., Ludwig, C., Mastromauro, L., Périvier, S., Tholomier, A., Ionita, I., Graf, C., & Busnel, C. (2023). Intrinsic Capacities, Functional Ability, Physiological Systems, and Caregiver Support: A Targeted Synthesis of Effective Interventions and International Recommendations for Older Adults. International journal of environmental research and public health, 20(5), 4382. https://doi.org/10.3390/ijerph20054382
    Bohannon, R. W., & Crouch, R. H. (2019). Two-Minute Step Test of Exercise Capacity: Systematic Review of Procedures, Performance, and Clinimetric Properties. Journal of geriatric physical therapy (2001), 42(2), 105–112. https://doi.org/10.1519/JPT.0000000000000164
    Bhutkar, M. V., Bhutkar, P. M., Taware, G. B., & Surdi, A. D. (2011). How effective is sun salutation in improving muscle strength, general body endurance and body composition?. Asian journal of sports medicine, 2(4), 259–266. https://doi.org/10.5812/asjsm.34742.
    Chen, C. Y., Wu, S. C., Chen, L. J., & Lue, B. H. (2010). The prevalence of subjective frailty and factors associated with frailty in Taiwan. Archives of gerontology and geriatrics, 50 Suppl 1, S43–S47. https://doi.org/10.1016/S0167-4943(10)70012-1
    Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., & Sheikh, Y. (2021). OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE transactions on pattern analysis and machine intelligence, 43(1), 172–186. https://doi.org/10.1109/TPAMI.2019.2929257
    Dent, E., Morley, J. E., Cruz-Jentoft, A. J., Woodhouse, L., Rodríguez-Mañas, L., Fried, L. P., Woo, J., Aprahamian, I., Sanford, A., Lundy, J., Landi, F., Beilby, J., Martin, F. C., Bauer, J. M., Ferrucci, L., Merchant, R. A., Dong, B., Arai, H., Hoogendijk, E. O., Won, C. W., … Vellas, B. (2019). Physical Frailty: ICFSR International Clinical Practice Guidelines for Identification and Management. The journal of nutrition, health & aging, 23(9), 771–787. https://doi.org/10.1007/s12603-019-1273-z
    Ensrud, K. E., Ewing, S. K., Taylor, B. C., Fink, H. A., Cawthon, P. M., Stone, K. L., Hillier, T. A., Cauley, J. A., Hochberg, M. C., Rodondi, N., Tracy, J. K., & Cummings, S. R. (2008). Comparison of 2 frailty indexes for prediction of falls, disability, fractures, and death in older women. Archives of internal medicine, 168(4), 382–389. https://doi.org/10.1001/archinternmed.2007.113
    Ensrud, K. E., Ewing, S. K., Cawthon, P. M., Fink, H. A., Taylor, B. C., Cauley, J. A., Dam, T. T., Marshall, L. M., Orwoll, E. S., Cummings, S. R., & Osteoporotic Fractures in Men Research Group (2009). A comparison of frailty indexes for the prediction of falls, disability, fractures, and mortality in older men. Journal of the American Geriatrics Society, 57(3), 492–498. https://doi.org/10.1111/j.1532-5415.2009.02137.x
    Fiuza-Luces, C., Santos-Lozano, A., Joyner, M., Carrera-Bastos, P., Picazo, O., Zugaza, J. L., Izquierdo, M., Ruilope, L. M., & Lucia, A. (2018). Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nature reviews. Cardiology, 15(12), 731–743. https://doi.org/10.1038/s41569-018-0065-1
    Gupta, A., Gupta, R., Sood, S., & Arkham, M. (2014). Pranayam for Treatment of Chronic Obstructive Pulmonary Disease: Results From a Randomized, Controlled Trial. Integrative medicine (Encinitas, Calif.), 13(1), 26–31.
    Grevendonk, L., Connell, N. J., McCrum, C., Fealy, C. E., Bilet, L., Bruls, Y. M. H., Mevenkamp, J., Schrauwen-Hinderling, V. B., Jörgensen, J. A., Moonen-Kornips, E., Schaart, G., Havekes, B., de Vogel-van den Bosch, J., Bragt, M. C. E., Meijer, K., Schrauwen, P., & Hoeks, J. (2021). Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nature communications, 12(1), 4773. https://doi.org/10.1038/s41467-021-24956-2
    Hamilton-West, K., Pellatt-Higgins, T., & Sharief, F. (2019). Evaluation of a Sudarshan Kriya Yoga (SKY) based breath intervention for patients with mild-to-moderate depression and anxiety disorders. Primary health care research & development, 20, e73. https://doi.org/10.1017/S1463423619000045
    Imai, N., Yoda, T., Horigome, Y., Murakami, R., Wakasugi, M., Fujii, T., Ohashi, M., & Kawashima, H. (2023). Determining factors that maintain physical function or increase frailty using the Kihon checklist among community-dwelling older adults: a six-year longitudinal study in Agano, Japan. BMC geriatrics, 23(1), 336. https://doi.org/10.1186/s12877-023-04055-1
    Kurl, S., Laukkanen, J. A., Lonnroos, E., Remes, A. M., & Soininen, H. (2018). Cardiorespiratory fitness and risk of dementia: a prospective population-based cohort study. Age and ageing, 47(4), 611–614. https://doi.org/10.1093/ageing/afy060
    Kumral, D., Schaare, H. L., Beyer, F., Reinelt, J., Uhlig, M., Liem, F., Lampe, L., Babayan, A., Reiter, A., Erbey, M., Roebbig, J., Loeffler, M., Schroeter, M. L., Husser, D., Witte, A. V., Villringer, A., & Gaebler, M. (2019). The age-dependent relationship between resting heart rate variability and functional brain connectivity. NeuroImage, 185, 521–533. https://doi.org/10.1016/j.neuroimage.2018.10.027
    Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., Seeman, T., Tracy, R., Kop, W. J., Burke, G., McBurnie, M. A., & Cardiovascular Health Study Collaborative Research Group (2001). Frailty in older adults: evidence for a phenotype. The journals of gerontology. Series A, Biological sciences and medical sciences, 56(3), M146–M156. https://doi.org/10.1093/gerona/56.3.m146
    Lai, X., Bo, L., Zhu, H., Chen, B., Wu, Z., Du, H., & Huo, X. (2021). Effects of lower limb resistance exercise on muscle strength, physical fitness, and metabolism in pre-frail elderly patients: a randomized controlled trial. BMC geriatrics, 21(1), 447. https://doi.org/10.1186/s12877-021-02386-5
    Lutsey, P. L., Chen, N., Mirabelli, M. C., Lakshminarayan, K., Knopman, D. S., Vossel, K. A., Gottesman, R. F., Mosley, T. H., & Alonso, A. (2019). Impaired Lung Function, Lung Disease, and Risk of Incident Dementia. American journal of respiratory and critical care medicine, 199(11), 1385–1396. https://doi.org/10.1164/rccm.201807-1220OC
    Ozaki, H., Loenneke, J.P., Thiebaud, R.S. & Abe, T. (2013) Resistance training induced increase in VO2max in young and older subjects. Eur Rev Aging Phys Act 10, 107–116. https://doi.org/10.1007/s11556-013-0120-1
    Pinckard, K., Baskin, K. K., & Stanford, K. I. (2019). Effects of Exercise to Improve Cardiovascular Health. Frontiers in cardiovascular medicine, 6, 69. https://doi.org/10.3389/fcvm.2019.00069
    Rikli, R. E., & Jones, C. J. (1999a). Development and Validation of a Functional Fitness Test for Community-Residing Older Adults. Journal of Aging and Physical Activity, 7(2), 129-161. Retrieved Jan 31, 2024, from https://doi.org/10.1123/japa.7.2.129
    Rikli, R.E. and Jones, C.J. (1999b) Functional Fitness Normative Scores for Community-Residing Older Adults, Ages 60-94. Journal of Aging and Physical Activity, 7, 162.
    https://doi.org/10.1123/japa.7.2.162
    Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J. P., Franklin, B. A., Haskell, W. L., Kaminsky, L. A., Levine, B. D., Lavie, C. J., Myers, J., Niebauer, J., Sallis, R., Sawada, S. S., Sui, X., Wisløff, U., American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health, Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Cardiovascular and Stroke Nursing, … Stroke Council (2016). Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation, 134(24),e653–e699. https://doi.org/10.1161/CIR.0000000000000461
    Sugie M., Harada K., Takahashi T., Nara M., Ishikawa J., Tanaka J., et al. (2018). Relationship between hand grip strength and peak VO2 in community-dwelling elderly outpatients. JCSM Clin. Rep. 3 (1). doi:10.17987/jcsm-cr.v3i1.48
    Swain, D. P., Abernathy, K. S., Smith, C. S., Lee, S. J., & Bunn, S. A. (1994). Target heart rates for the development of cardiorespiratory fitness. Medicine and science in sports and exercise, 26(1), 112–116.
    Pinckard, K., Baskin, K. K., & Stanford, K. I. (2019). Effects of Exercise to Improve Cardiovascular Health. Frontiers in cardiovascular medicine, 6, 69. https://doi.org/10.3389/fcvm.2019.00069
    Thomas, E., Battaglia, G., Patti, A., Brusa, J., Leonardi, V., Palma, A., & Bellafiore, M. (2019). Physical activity programs for balance and fall prevention in elderly: A systematic review. Medicine, 98(27), e16218. https://doi.org/10.1097/MD.0000000000016218
    Tinetti, M. E., Inouye, S. K., Gill, T. M., & Doucette, J. T. (1995). Shared risk factors for falls, incontinence, and functional dependence. Unifying the approach to geriatric syndromes. JAMA, 273(17), 1348–1353.
    Taylor, J. A., Greenhaff, P. L., Bartlett, D. B., Jackson, T. A., Duggal, N. A., & Lord, J. M. (2023). Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiological reviews, 103(2), 1137–1191. https://doi.org/10.1152/physrev.00037.2021
    Toshpulatov, M., Lee, W., Lee, S., & Roudsari, A. H. (2022). Human Pose, Hand and Mesh Estimation Using Deep Learning: A Survey. The Journal of Supercomputing, 78(7616–7654). doi:10.1007/s11227-021-04184-7
    Takeda, I., Yamada, A., & Onodera, H. (2021). Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture. Computer methods in biomechanics and biomedical engineering, 24(8), 864–873. https://doi.org/10.1080/10255842.2020.1856372
    Węgrzynowska-Teodorczyk, K., Mozdzanowska, D., Josiak, K., Siennicka, A., Nowakowska, K., Banasiak, W., Jankowska, E. A., Ponikowski, P., & Woźniewski, M. (2016). Could the two-minute step test be an alternative to the six-minute walk test for patients with systolic heart failure?. European journal of preventive cardiology, 23(12), 1307–1313. https://doi.org/10.1177/2047487315625235

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE