簡易檢索 / 詳目顯示

研究生: 謝坤翰
Hsieh, Kun-Han
論文名稱: 探討具血管收縮素轉化酶2交叉反應性抗新型冠狀病毒棘蛋白受體結合域抗體在嚴重特殊傳染性肺炎患者中對於釋網凋亡的增強作用
Study on the enhancement of NETosis by ACE2-cross-reactive anti-SARS-CoV-2 RBD antibodies in patients with COVID-19
指導教授: 葉才明
Yeh, Trai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 嚴重特殊傳染性肺炎抗人類血管收縮素轉化酶2自體抗體嗜中性球胞外陷阱交叉反應血栓形成
外文關鍵詞: COVID-19, anti-ACE2 autoantibody , NETosis, cross-reactivity, thrombosis
ORCID: 0009-0005-7402-7622
相關次數: 點閱:75下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大量形成的嗜中性球胞外陷阱(NETs, or NETosis)和高水平的自體抗體與嚴重特殊傳染性肺炎(COVID-19)患者的不良預後和疾病嚴重程度有關。 據報導,具人類血管收縮素轉化酶2 (ACE2)交叉反應性抗嚴重急性呼吸症候群冠狀病毒2棘蛋白受體結合域(SARS-CoV-2 RBD)抗體(CR Abs)是抗ACE2自體抗體的來源之一。然而,CR Abs在NETs形成中的病理意義仍然未知。在本研究中,我們首先透過血清學分析評估了不同嚴重程度的COVID-19患者血清中CR抗體產生的程度。接著透過測試CR Abs陽性的COVID-19患者血清和純化IgG以及小鼠單株CR抗體 (mAb 127),以了解它們對NETosis的影響,並研究其可能的病理機制。在120名患者中發現CR抗體含量與COVID-19嚴重程度之間存在關聯。在存在RBD的情況下,來自重症COVID-19患者的CR Abs陽性血清和IgG以及mAb 127顯著激活人類白血球並引發NETosis。這種 CR Ab和RBD共存引發的NETosis進一步活化了參與血栓形成的相關細胞,但當CR Ab與ACE2或Fc受體之間的相互作用被破壞時,NETosis就會消除。我們也發現,在存在重組ACE2或Src家族激酶抑制劑(dasatinib)的情況下,CR Abs誘導的NETosis會受到抑制。此外,我們發現COVID-19疫苗接種不僅可以降低COVID-19的嚴重程度,還可以阻止 SARS-CoV-2 感染後CR抗體的產生。我們的研究結果指出CR Abs可以透過增強NETosis而加劇COVID-19病症的可能致病作用,強調ACE2和dasatinib作為潛在的治療方法,並支持疫苗接種在降低COVID-19患者疾病嚴重程度和CR Abs產生方面的益處。

    Neutrophil extracellular trap (NETs) formation or NETosis and autoantibodies are related to poor prognosis and disease severity in COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.

    中文摘要 II Abstract III Table of Contents IV 1. Introduction 1 1.1 COVID-19 1 1.1.1 Epidemiology 1 1.1.2 COVID-19 symptoms and complications 2 1.2 SARS-CoV-2 2 1.2.1 Phylogeny, taxonomy, and transmission 2 1.2.2 Viral genome and proteins 3 1.2.3 Viral entry 3 1.2.4 Viral replication and budding 4 1.3 Innate Immune Response 5 1.3.1 Inflammation in COVID-19 5 1.3.2 Neutrophil activation in COVID-19 6 1.3.3 NETosis in COVID-19 7 1.4 Adaptive Immune Response 8 1.4.1 Antibody Response in COVID-19 8 1.4.2 Autoantibodies in COVID-19 9 1.4.3 Anti-ACE2 Autoantibodies in COVID-19 10 2. Research goal and specific aims 11 3. Materials and Methods 13 3.1 Material Reagents and Instrument Usage 13 3.1.1 Cell lines 13 3.1.2 Antibodies 13 3.1.3 Recombinant protein 14 3.1.4 Reagents 14 3.1.5 Instruments 16 3.2 Isolation of human leukocytes 16 3.3 Isolation of human peripheral blood mononuclear cells 16 3.4 Isolation of human neutrophils 17 3.5 Isolation of human platelets 17 3.6 Complement-dependent cytotoxicity assay 18 3.7 Lactate dehydrogenase activity assay 18 3.8 Western blotting 18 3.9 Recombinant SARS-CoV-2 S1-RBD protein generation 19 3.10 Monoclonal antibody and F(ab')2 fragment generation 20 3.11 Indirect ELISAs 20 3.12 In vitro human leukocyte stimulation 20 3.13 Neutrophil adhesion assay 21 3.14 Quantification of NET formation 21 3.15 NET purification and treatment with NET-containing supernatants 22 3.16 Endothelial cell permeability assay 23 3.17 Flow cytometry analysis of platelet activation 23 3.18 HUVEC, neutrophil and platelet coculture model 23 3.19 Cohort Information 24 3.20 Serum preadsorption assay 25 3.21 Purification and preadsorption of immunoglobulin G (IgG) from COVID-19 patient serum 25 3.22 Statistical analysis 26 4. Results 27 4.1. mAb 127 induces complement-dependent cytotoxicity (CDC) in ACE2-overexpressing HEK 293 cells 27 4.2. mAb 127 induces leukocyte activation in the presence of RBD protein 27 4.3. mAb 127 stimulates neutrophil activation in the presence of RBD protein 28 4.4. mAb 127 triggers NETosis in the presence of RBD protein 29 4.5. NETs from activated neutrophils drive thrombosis-associated cell activation in vitro 29 4.6. Both ACE2 and the Fc receptor are needed for ACE2-cross-reactive anti-RBD antibodies to trigger NETosis 30 4.7. Src- and PAD-4-dependent pathways are involved in ACE2 cross-reactive anti-RBD antibody-induced NETosis in the presence of RBD 31 4.9. Vaccination prevents the production of ACE2 cross-reactive anti-RBD antibodies in COVID-19 32 4.10. Patients’ sera with CR Abs induce leukocyte activation in the presence of RBD protein 33 4.11. Patients’ sera with CR Abs induce IL-8 secretion and NET formation in human neutrophils in the presence of RBD protein 34 4.12. Purified CR IgG from patients with COVID-19 induces NETosis in the presence of RBD protein 34 5. Discussion 36 6. References 41 7. Tables 48 8. Figures 50

    1. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, Waheed A, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500.
    2. Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol. 2023;21(6):361-79.
    3. Hu B, Guo H, Zhou P, and Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54.
    4. Lamers MM, and Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol. 2022;20(5):270-84.
    5. Ramos-Casals M, Brito-Zeron P, and Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021;17(6):315-32.
    6. Yang L, Xie X, Tu Z, Fu J, Xu D, and Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther. 2021;6(1):255.
    7. Tay MZ, Poh CM, Renia L, MacAry PA, and Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74.
    8. Petito E, Falcinelli E, Paliani U, Cesari E, Vaudo G, Sebastiano M, et al. Association of Neutrophil Activation, More Than Platelet Activation, With Thrombotic Complications in Coronavirus Disease 2019. J Infect Dis. 2021;223(6):933-44.
    9. Casciola-Rosen L, Thiemann DR, Andrade F, Trejo Zambrano MI, Hooper JE, Leonard E, et al. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19. medRxiv. 2020.
    10. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089-98.
    11. Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun. 2021;12(1):5417.
    12. Zhu Y, Chen X, and Liu X. NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond. Front Immunol. 2022;13:838011.
    13. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Consortium C-GU, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162-77.
    14. V'Kovski P, Kratzel A, Steiner S, Stalder H, and Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155-70.
    15. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-4.
    16. Al-Sheboul SA, Brown B, Shboul Y, Fricke I, Imarogbe C, and Alzoubi KH. An Immunological Review of SARS-CoV-2 Infection and Vaccine Serology: Innate and Adaptive Responses to mRNA, Adenovirus, Inactivated and Protein Subunit Vaccines. Vaccines (Basel). 2022;11(1).
    17. Antonelli M, Penfold RS, Merino J, Sudre CH, Molteni E, Berry S, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Lancet Infect Dis. 2022;22(1):43-55.
    18. Niedzwiedzka-Rystwej P, Grywalska E, Hrynkiewicz R, Bebnowska D, Wolacewicz M, Majchrzak A, et al. Interplay between Neutrophils, NETs and T-Cells in SARS-CoV-2 Infection-A Missing Piece of the Puzzle in the COVID-19 Pathogenesis? Cells. 2021;10(7).
    19. Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, and Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46-64.
    20. Jamal M, Bangash HI, Habiba M, Lei Y, Xie T, Sun J, et al. Immune dysregulation and system pathology in COVID-19. Virulence. 2021;12(1):918-36.
    21. Savla SR, Prabhavalkar KS, and Bhatt LK. Cytokine storm associated coagulation complications in COVID-19 patients: Pathogenesis and Management. Expert Rev Anti Infect Ther. 2021;19(11):1397-413.
    22. Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15).
    23. Hazeldine J, and Lord JM. Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front Immunol. 2021;12:680134.
    24. McKenna E, Wubben R, Isaza-Correa JM, Melo AM, Mhaonaigh AU, Conlon N, et al. Neutrophils in COVID-19: Not Innocent Bystanders. Front Immunol. 2022;13:864387.
    25. Malech HL, Deleo FR, and Quinn MT. The role of neutrophils in the immune system: an overview. Methods Mol Biol. 2014;1124:3-10.
    26. Kaiser R, Leunig A, Pekayvaz K, Popp O, Joppich M, Polewka V, et al. Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight. 2021;6(18).
    27. Cesta MC, Zippoli M, Marsiglia C, Gavioli EM, Cremonesi G, Khan A, et al. Neutrophil activation and neutrophil extracellular traps (NETs) in COVID-19 ARDS and immunothrombosis. Eur J Immunol. 2023;53(1):e2250010.
    28. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11).
    29. Liana P, Liberty IA, Murti K, Hafy Z, Salim EM, Zulkarnain M, et al. A systematic review on neutrophil extracellular traps and its prognostication role in COVID-19 patients. Immunol Res. 2022;70(4):449-60.
    30. Liu X, Arfman T, Wichapong K, Reutelingsperger CPM, Voorberg J, and Nicolaes GAF. PAD4 takes charge during neutrophil activation: Impact of PAD4 mediated NET formation on immune-mediated disease. J Thromb Haemost. 2021;19(7):1607-17.
    31. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134-47.
    32. Ackermann M, Anders HJ, Bilyy R, Bowlin GL, Daniel C, De Lorenzo R, et al. Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ. 2021;28(11):3125-39.
    33. Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12).
    34. Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169-79.
    35. Qi H, Liu B, Wang X, and Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat Immunol. 2022;23(7):1008-20.
    36. Kolb P, Giese S, Voll RE, Hengel H, and Falcone V. Immune complexes as culprits of immunopathology in severe COVID-19. Med Microbiol Immunol. 2023;212(2):185-91.
    37. Mazzitelli I, Bleichmar L, Luduena MG, Pisarevsky A, Labato M, Chiaradia V, et al. Immunoglobulin G Immune Complexes May Contribute to Neutrophil Activation in the Course of Severe Coronavirus Disease 2019. J Infect Dis. 2021;224(4):575-85.
    38. Damoiseaux J, Dotan A, Fritzler MJ, Bogdanos DP, Meroni PL, Roggenbuck D, et al. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun Rev. 2022;21(3):103012.
    39. Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283-8.
    40. Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Baiocchi GC, et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun. 2022;13(1):1220.
    41. Elkon K, and Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008;4(9):491-8.
    42. Dobrowolska K, Zarebska-Michaluk D, Poniedzialek B, Jaroszewicz J, Flisiak R, and Rzymski P. Overview of autoantibodies in COVID-19 convalescents. J Med Virol. 2023;95(6):e28864.
    43. Liu Q, Miao H, Li S, Zhang P, Gerber GF, Follmann D, et al. Anti-PF4 antibodies associated with disease severity in COVID-19. Proc Natl Acad Sci U S A. 2022;119(47):e2213361119.
    44. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, and Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021;384(22):2092-101.
    45. Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, et al. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N Engl J Med. 2021;384(23):2202-11.
    46. Leung HHL, Perdomo J, Ahmadi Z, Zheng SS, Rashid FN, Enjeti A, et al. NETosis and thrombosis in vaccine-induced immune thrombotic thrombocytopenia. Nat Commun. 2022;13(1):5206.
    47. Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, et al. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat Immunol. 2023;24(4):604-11.
    48. Rodriguez-Perez AI, Labandeira CM, Pedrosa MA, Valenzuela R, Suarez-Quintanilla JA, Cortes-Ayaso M, et al. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J Autoimmun. 2021;122:102683.
    49. Casciola-Rosen L, Thiemann DR, Andrade F, Trejo-Zambrano MI, Leonard EK, Spangler JB, et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022;7(9).
    50. Arthur JM, Forrest JC, Boehme KW, Kennedy JL, Owens S, Herzog C, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021;16(9):e0257016.
    51. Lai YC, Cheng YW, Chao CH, Chang YY, Chen CD, Tsai WJ, et al. Antigenic Cross-Reactivity Between SARS-CoV-2 S1-RBD and Its Receptor ACE2. Front Immunol. 2022;13:868724.
    52. Cheng YL, Chao CH, Lai YC, Hsieh KH, Wang JR, Wan SW, et al. Antibodies against the SARS-CoV-2 S1-RBD cross-react with dengue virus and hinder dengue pathogenesis. Front Immunol. 2022;13:941923.
    53. Wilhelmsen K, Farrar K, and Hellman J. Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions. J Vis Exp. 2013(78):e50677.
    54. Tong M, and Abrahams VM. Visualization and Quantification of Neutrophil Extracellular Traps. Methods Mol Biol. 2021;2255:87-95.
    55. Najmeh S, Cools-Lartigue J, Giannias B, Spicer J, and Ferri LE. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling. J Vis Exp. 2015(98).
    56. Szturmowicz M, and Demkow U. Neutrophil Extracellular Traps (NETs) in Severe SARS-CoV-2 Lung Disease. Int J Mol Sci. 2021;22(16).
    57. Radermecker C, Detrembleur N, Guiot J, Cavalier E, Henket M, d'Emal C, et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J Exp Med. 2020;217(12).
    58. Middleton EA, He X-Y, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169-79.
    59. Youn YJ, Lee YB, Kim SH, Jin HK, Bae JS, and Hong CW. Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation. Immune Netw. 2021;21(2):e16.
    60. Lebourgeois S, David A, Chenane HR, Granger V, Menidjel R, Fidouh N, et al. Differential activation of human neutrophils by SARS-CoV-2 variants of concern. Front Immunol. 2022;13:1010140.
    61. Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151-7.
    62. Sung PS, Yang SP, Peng YC, Sun CP, Tao MH, and Hsieh SL. CLEC5A and TLR2 are critical in SARS-CoV-2-induced NET formation and lung inflammation. J Biomed Sci. 2022;29(1):52.
    63. Turner S, Khan MA, Putrino D, Woodcock A, Kell DB, and Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab. 2023;34(6):321-44.
    64. Lechuga GC, Morel CM, and De-Simone SG. Hematological alterations associated with long COVID-19. Front Physiol. 2023;14:1203472.
    65. Chen C, Amelia A, Ashdown GW, Mueller I, Coussens AK, and Eriksson EM. Risk surveillance and mitigation: autoantibodies as triggers and inhibitors of severe reactions to SARS-CoV-2 infection. Mol Med. 2021;27(1):160.
    66. Krinsky N, Sizikov S, Nissim S, Dror A, Sas A, Prinz H, et al. NETosis induction reflects COVID-19 severity and long COVID: insights from a 2-center patient cohort study in Israel. J Thromb Haemost. 2023;21(9):2569-84.
    67. Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NAH, Alexiou A, and Batiha GE. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol. 2022;104:108516.
    68. Veras FP, Gomes GF, Silva BMS, Caetite DB, Almeida C, Silva CMS, et al. Targeting neutrophils extracellular traps (NETs) reduces multiple organ injury in a COVID-19 mouse model. Respir Res. 2023;24(1):66.
    69. Jarrahi A, Khodadadi H, Moore NS, Lu Y, Awad ME, Salles EL, et al. Recombinant human DNase-I improves acute respiratory distress syndrome via neutrophil extracellular trap degradation. J Thromb Haemost. 2023.
    70. Castanheira FVS, and Kubes P. Neutrophils during SARS-CoV-2 infection: Friend or foe? Immunol Rev. 2023;314(1):399-412.
    71. Piemonti L, Landoni G, Voza A, Puoti M, Gentile I, Coppola N, et al. Efficacy and Safety of Reparixin in Patients with Severe COVID-19 Pneumonia: A Phase 3, Randomized, Double-Blind Placebo-Controlled Study. Infect Dis Ther. 2023;12(10):2437-56.
    72. Zhang H, Lv P, Jiang J, Liu Y, Yan R, Shu S, et al. Advances in developing ACE2 derivatives against SARS-CoV-2. Lancet Microbe. 2023;4(5):e369-e78.
    73. Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, et al. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res. 2020;37(9):167.
    74. Huang KY, Lin MS, Kuo TC, Chen CL, Lin CC, Chou YC, et al. Humanized COVID-19 decoy antibody effectively blocks viral entry and prevents SARS-CoV-2 infection. EMBO Mol Med. 2021;13(1):e12828.
    75. Cooper N, Ghanima W, Hill QA, Nicolson PL, Markovtsov V, and Kessler C. Recent advances in understanding spleen tyrosine kinase (SYK) in human biology and disease, with a focus on fostamatinib. Platelets. 2023;34(1):2131751.
    76. Wigerblad G, Warner SA, Ramos-Benitez MJ, Kardava L, Tian X, Miao R, et al. Spleen tyrosine kinase inhibition restores myeloid homeostasis in COVID-19. Sci Adv. 2023;9(1):eade8272.
    77. Brannock MD, Chew RF, Preiss AJ, Hadley EC, Redfield S, McMurry JA, et al. Long COVID risk and pre-COVID vaccination in an EHR-based cohort study from the RECOVER program. Nat Commun. 2023;14(1):2914.
    78. Peng K, Li X, Yang D, Chan SCW, Zhou J, Wan EYF, et al. Risk of autoimmune diseases following COVID-19 and the potential protective effect from vaccination: a population-based cohort study. EClinicalMedicine. 2023;63:102154.
    79. Byambasuren O, Stehlik P, Clark J, Alcorn K, and Glasziou P. Effect of covid-19 vaccination on long covid: systematic review. BMJ Med. 2023;2(1):e000385.
    80. Jaycox JR, Lucas C, Yildirim I, Dai Y, Wang EY, Monteiro V, et al. SARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity. Nat Commun. 2023;14(1):1299.
    81. Cao T, Liu L, To KK, Lim CY, Zhou R, Ming Y, et al. Mitochondrial regulation of acute extrafollicular B-cell responses to COVID-19 severity. Clin Transl Med. 2022;12(9):e1025.
    82. Roltgen K, and Boyd SD. Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell Host Microbe. 2021;29(7):1063-75.
    83. Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-16.
    84. Chen S, Guan F, Candotti F, Benlagha K, Camara NOS, Herrada AA, et al. The role of B cells in COVID-19 infection and vaccination. Front Immunol. 2022;13:988536.
    85. Carnevale R, Cammisotto V, Bartimoccia S, Nocella C, Castellani V, Bufano M, et al. Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2 Infection. Circ Res. 2023;132(3):290-305.
    86. Bader M, Kragstrup TW, Singh HS, Grundberg I, Nielsen AL-L, Rivellese F, et al. Plasma ACE2 predicts outcome of COVID-19 in hospitalized patients. Plos One. 2021;16(6).
    87. McMillan P, Dexhiemer T, Neubig RR, and Uhal BD. COVID-19—A Theory of Autoimmunity Against ACE-2 Explained. Frontiers in Immunology. 2021;12.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE