簡易檢索 / 詳目顯示

研究生: 林春億
Lin, Chun-Yi
論文名稱: 摩擦攪拌製程對5083鋁合金等軸晶鑄造材顯微組織與拉伸性質之影響
Effect of FSP on Microstucture and Tensile Properties of 5083 Casting Al Alloy with Equal Axial Grain Structure
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: 摩擦攪拌製程應變硬化指數動態應變時效
外文關鍵詞: FSP, dynamic strain aging
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 5083鋁合金等軸晶鑄造材擁有比強度高、耐蝕性佳、熱均勻膨脹性佳等優點。近來常應用於半導體產業中大型加熱腔體的材料,或以薄型板材的型態應用於某些半導體機械零組件上。一般而言,摩擦攪拌銲接可改善傳統熔接熱影響區弱化的問題。吾人利用與FSW相同原理的FSP製程,將其施予5083等軸晶鑄造材,並探討其銲道區域拉伸性質的表現。一方面作為FSW在本材料中做為銲接技術是否可行的參考。另一方面,當薄型板材需作彎曲加工時,若在其將產生劇烈變形處施予FSP,評估其是否有助提升其耐加工性。
    本研究中以拉伸測試來檢驗FSP後機械性質是否有所提升。發現母材經摩擦攪拌製程後,其銲道區域的均勻沿伸率由10%提升至18%左右,總延伸率則由11%提升至22%。一方面以拉伸性質中的應變硬化指數評估母材在摩擦攪拌前後均勻沿伸率的差異。發現經摩擦攪拌製程者應變硬化指數提升,代表其抵抗頸縮的能力較佳,故均勻延伸性質提高。推測乃由於其晶粒、第二相晶出物(Al6(Mn,Fe)、Al6Mn)尺寸與分佈均勻化所致。另一方面則進行拉伸破斷面附近的次表面觀察,藉以推測導致破斷發生的裂縫形成與傳播與第二相之間的關聯性。發現母材與攪拌後銲道區試片,其破斷面附近的Al6(Mn,Fe)均有碎裂的情形發生,推測為Al6(Mn,Fe)為裂縫形成起始點。其中,母材Al6(Mn,Fe)碎裂後出現大規模裂縫,因此頸縮後並未有太多的應變量即發生破壞。經摩擦攪拌者其裂縫規模小且裂縫間距大,因此在頸縮發生後而破壞發生前尚進行一段非均勻的彈塑性變形。综合以上,FSP對於延性有正面提升之效。然而,在相同應變量下的強度探討上,發現雖晶粒與第二相均細化,而強度未見顯著差異,應有其他更有力的主導因素存在,本研究未對此深入探討。
    5083鋁合金拉伸過程中,拉伸曲線上經常出現抖動的現象。文獻中推論其為固溶的鎂原子與移動的差排交互作用,因而產生動態應變時效現象。本研究以動態應變時效發生的臨界應變量與抖動振幅(應力降)加以評估。藉以推測FSP對5083等軸晶鑄造材動態應變時效發生難易的影響。發現FSP銲道區的試片拉伸其臨界應變量變小、應力降變大。由此可推測,FSP造成微觀組織改變有促進動態應變時效發生的效果。

    Fully-annealed 5083 Al casting alloy (5083C) has an equiaxed grain structure. Because of its high specific tensile strength, great corrosion resistance, and uniform expansion properties, it has been used to manufacture the cases of heating furnaces in semiconductor industry in recent years. Sometimes, 5083C Al thin sheets are also used to produce some components of semiconductor equipments. Friction stir welding (FSW) is a solid-state joining process providing better mechanical properties than fusion welding process. Friction stir processing (FSP) is an emerging technique based on the principle of FSW. In this research, it was investigated the tensile properties for the stir zone of Al alloy 5083C to judge the FSW technique is suitable for Al alloy 5083C. The results of this research also could help us to know if the FSP technique can modify the working properties of Al alloy 5083C thin sheets under severe bending strain.
    The results of tensile test show that FSP technique increase the uniform elongation from 10% to 18%, and total elongation from 11% to 22%. In addition, the strain hardening exponent ‘n’ is found to increase with the FSP technique. It means that FSP technique is helpful to improve the resistance to instable deformation. According to the previous studies we conjecture that the strain hardening exponent should increase as a result of grain and intermetallic compounds (Al6(Mn,Fe),Al6Mn) refinement and homogenization. Besides, it can be inferred the relationship between cracks and intermetallic compounds (IMC) by observations of the microstructures near fracture surface. It is always found that the IMC Al6(Mn,Fe) near the fracture surface was broken in all tensile specimens. So, we conjecture that Al6(Mn,Fe) is the beginning of the cracks. Because of the large cracks in 5083C during tensile test, the specimens is broken rapidly after necking occurring. It is found that the cracks near fracture surface in the FS-processed tensile specimens are smaller and homogenously distributed. So, the FS-processed tensile specimens deformed remarkably after necking. FSP technique enhances the ductility of 5083C. Microstructures of Al alloy 5083C could be obviously refined and homogenized by FSP technique, however the strength is not increased. There might be some key factors that we did not concern to affect the strength.
    Dynamic strain aging or serrated yielding has been wildly investigated in Al alloy 5083. But the effect of FSP technique to dynamic strain aging was not concerned in previous studies. In this study, critical strain and stress drop are used to analyze dynamic strain aging. The results show that critical strain decreases and stress drop increases after FSP.

    中文摘要 …………………………………………………………… Ⅰ 英文摘要 …………………………………………………………… Ⅲ 總目錄 …………………………………………………………… Ⅴ 表目錄 …………………………………………………………… Ⅶ 圖目錄 …………………………………………………………… Ⅷ 第一章 前言……………………………………………………… 1 第二章 文獻回顧………………………………………………… 3 2-1  Al-Mg系合金與5083鋁合金之介紹………………… 3 2-2  摩擦攪拌製程/摩擦攪拌銲接………………………… 4 2-3 動態應變時效…………………………………………… 5 2-3-1 鋸齒狀流變型態描述…………………………………… 5 2-3-2 臨界應變量與應力降…………………………………… 6 2-4 應變硬化指數探討……………………………………… 7 2-4-1 應變硬化指數理論回顧………………………………… 7 2-4-2 微觀組織、應變硬化指數、塑性變形行為之間關係… 9 第三章 實驗步驟與方法……………………………………… 16 3-1 實驗用材料……………………………………………… 16 3-2 摩擦攪拌製程…………………………………………… 16 3-3  微觀組織觀察…………………………………………… 16 3-4 拉伸測試………………………………………………… 17 3-5 應變硬化指數計算……………………………………… 17 第四章 實驗結果………………………………………………… 22 4-1 微觀組織之摩擦攪拌效應……………………………… 22 4-1-1 摩擦攪拌製程前後晶出物分析………………………… 22 4-1-2 摩擦攪拌製程PD面微觀組織觀察…………………… 23 4-2  拉伸曲線特徵之摩擦攪拌效應………………………… 24 4-2-1 拉伸性質與拉伸次表面觀察…………………………… 24 4-2-2 PLC效應特徵…………………………………………… 25 第五章 討論……………………………………………………… 42 5-1 摩擦攪拌製程後PD面顯微組織成因探討…………… 42 5-2 攪拌前後微觀組織改變對PLC效應影響之探討……… 43 5-3 攪拌前後微觀組織與PLC效應變化對拉伸性質之影響 44 5-3-1 延性探討………………………………………………… 44 5-3-2 強度探討………………………………………………… 46 第六章 結論……………………………………………………… 50 第七章 文獻回顧………………………………………………… 51

    1. L. F. Mondolfo, “Aluminum Alloys Structure & Properties”, Chapter
    4-3, pp. 806-842, 1976.
    2. I. J. Polmear “Light Alloys Metallurgy of the Light Metals”, pp. 15-
    123, 1980.
    3. John E. Hatch, “Aluminum Properties and Physical Metallurgy”,
    Chap9, pp. 356-367, 1985.
    4. Taylor Lyman, Howard E. Boyer, “Welding and Brazing”, Metals
    Handbook, Vol. 6, pp. 296-336, 1971.
    5. W. M. Thomas, E. D. Nicholas, “Friction stir welding for the
    Transportation industries”, Materials & Design, Vol. 18, Nos. 4/6, pp.
    269-273, 1997.
    6. R. W. Fonda, J. F. Bingert, K. J. Colligan, “Development of grain
    structure during friction stir welding”, Scripta Materialia, 51, pp.
    243-248, 2004.
    7. Wang Deqing, Liu Shuhua, ”Study of friction stir welding of
    aluminum”, Journal of Materials Science, 39, pp. 1689-1693, 2004.
    8. W. B. Lee, Y. M. Yeon, S. B. Jung, “The improvement of mechanical
    properties of friction-stir-welded A356 Al alloy”, Materials Science
    and Engineering A, 355, pp. 154-159, 2003.
    9. Rajiv S. Mishra, “Friction stir processing technologies”, Advanced
    Materials and Processes, pp. 43-46, 2003.
    10. R. S. Mishra, Z. Y. Ma, “Friction stir welding and processing”,
    Material Science and Engineering, R50, pp. 1-78, 2005.
    11. M. P. Miles, M. W. Mahoney, T. W. Nelson, R. S. Mishra, “Finite
    element simulation of plane-strain thick plate bending of friction-stir
    processed 2519 aluminum”, TMS Annual Meeting,Friction Stir
    Welding and ProcessingⅡ, pp. 253-258, 2003.
    12. Mendelson, “Plasticity:Theory and Application”, pp. 1-133, 1968.
    13. Wei Wen, Yumin Zhao, J. G. Morris, “The effect of Mg precipitation
    on the mechanical properties of 5xxx aluminum alloys”, Materials
    Science and Engineering A, 392, pp. 136-144, 2005.
    14. I. S. Kim, M. C. Chaturvedi, “Serrated flow in Al-5%Mg alloy”,
    Materials Science and Engineering, 37, pp. 165-172, 1979.
    15. Taylor Lyman, Howard E. Boyer, “Metallography, Structure and
    Phase Diagrams”, Metals Handbook, Vol. 8, pp. 251-434, 1973.
    16. Yingchun Chen, Huijie Liu, Jicai Feng, “Friction stir welding
    characteristics of different heat-treated-stated 2219 aluminum alloy
    plates”, Materials Science and Engineering A, 420, pp. 21-25, 2006.
    17. H. Liu, M. Maeda, H. Fujii, K. Nogi, “Tensile properties and fracture locations of friction-stir welded joints of 1050-H24 aluminum alloy”, Journal of Materials Science Letters, 22, pp. 41-43, 2003.
    18. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, W. H.Bingel, “Properties of friction-stir-welded 7075 T651 Aluminum”, Metallurgical and Materials Transaction A, Vol. 29A, pp. 1955-1964, 1997.
    19. Yutaka S. Sato, Mitsunori Urata, Hiroyuki Kokawa, Keisuke Ikeda, “Ha11-Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys”, Materials Science and Engineering A, 354, pp. 298-305, 2003.
    20. Wei Wen, J. G. Morris, “An investigation of serrated yielding in 5000
    serries aluminum alloys”, Materials Science and Engineering
    A, 354, pp. 279-285, 2003.
    21. D. Thevent, M. Mliha-Touati, A. Zeghloul, “The effect of
    precipitation on the Portevin-Le Chatelier effect in an Al-Zn-Mg-Cu
    alloy”, Materials Science and Engineering A, 266, pp. 175-182, 1999.
    22. Y. Estrin, M. A. Lebyodkin, “The influence of dispersion particles
    on the Portevin-Le Chatelier effect:from average particle
    characteristics to particle arrangement”, Materials Science and
    Engineering A, 387-389, pp. 195-198, 2004.
    23. E. Pink, A. Grinberg, “Stress drop in serrated flow curves of Al5Mg”,
    Acta metall. Vol. 30, pp. 2153-2163, 1982.
    24. 陳錦修,「兩相共晶鋁合金213K至673K之拉伸特性研究」,國
    立成功大學材料及工程學系,博士論文,22-38頁,民國85年。
    25. K. Chihab, C. Fressengeas, “Time distribution of stress drops, critical
    strain and crossover in the dynamics of jerky flow”, Materials Science
    and Engineering A, 356, pp. 102-107, 2003.
    26. X-M. Cheng, J.G. Morris, “The anisotropy of the Portevin-Le
    Chatelier effect in aluminum alloys”, Scripta mater., 43, pp. 651-658,
    2000.
    27. Matthew Wagenhofer, MarjorieAnn Erickson-Natishan, Ronald W.
    Armstrong, Frank J. Zerilli, “Influences of strain rate and grain size
    on yield and serrated flow in commercial Al-Mg alloy 5086”, Scripta
    Materialia, Vol. 41, No. 11, pp.1177-1184, 1999.
    28. Erwin Pink, Patrick Bruckbauer, Herbert Weinhandl, “Stress-drop
    rates in serrated flow of aluminum alloys”, Scripta Materialia, Vol.
    38, No. 6, pp. 945-951, 1998.
    29. Erwin Pink, Adolfo Grinberg, “Serrated flow in a ferritic stainless
    steel”, Materials Science and Engineering, 51, pp. 1-8, 1981.
    30. Kamel Chihab, Hakim Ait-Amokhtar, Khaidre Bouabdellah,
    “Serrated Yielding due to Portevin-Le Charelier effect in commercial
    Al-Mg alloys”, Ann. Chim. Sci. Mat., 27, pp. 69-75, 2002.
    31. Norman E. Downling, “Mechanical Behavior of Materials”, Chapter
    12, pp. 552-553, 1993.
    32. E. Martin, A. Forn, R. Nogue, “Strain hardening behaviour and
    temperature effect on Al-2124/SiCp”, Journal of Materials
    Processing Technology, 143-144, pp. 1-4, 2003.
    33. 汪俊延,「塑性不均勻性對[111]纖維織構鋁擠型材的織構強化與
    擬超塑性變形之效應」,國立成功大學材料及工程學系,博士論
    文,民國86年。
    34. A. Fawzy, R. H. Nada, “Effect of grain diameter on the tensile
    characteristics of thermally deformed Ag-4.4wt% Cu alloy”, Physica
    B, 371, pp. 5-11, 2006.
    35. S. Nagarjuna, M. Srinivas, K. Balasubramanian, D. S. Sarma,
    “Effect of Modulations on yield stress amd strain hardenin exponent
    of solution treated Cu-Ti alloys”, Scripta Materialia, Vol. 38, No. 9,
    pp. 1469-1474, 1998.
    36. S. Latha, K. Laha, K. B. S. Rao, S. L. Mannan, “Comparative study of
    tensile flow parameters in forged and rolled 9Cr-1Mo steel”, Int. J.
    Ves. & Piping, 67, pp. 155-160, 1996.
    37. Zhang Fan, Huang Mingzhi, Shi Deke, “The relationship between
    the strain-hardening exponent n and the Microstructure of metals”,
    Matrials Science and Engineering A, 122, pp. 211-213, 1989.
    38. Wei Wen, W. C. Liu, J. G. Morris, “The effect of Mg2Al3 and of
    MnAl6 on texture evolution during isothermal annealing and
    subsequently on formability of CC AA5182 Al alloy”, Materials
    Science and Engineering A, 380, pp. 191-207, 2004.
    39. N. Selvakumar, R. Narayanasamy, “Phenomenon of strain hardening
    behaviour of sintered aluminum performs during cold axial forming”,
    Journal of Materials Processing Technology, 142, 347-354, 2003.
    40. William D. Callister, “Materials Science and Enginering An
    Introduction”, Chapter 6, pp.131, 1999.
    41. T. Takaai, T. Daito, “Observation of voids and cracks on ductile
    fracture process in tensile test of 5083 aluminum alloy plate”, J. Japan
    Inst. of Light Metals, Vol. 33, pp. 67-75, 1983.
    42. Goutam Das, Sabita Ghosh, S. K. Sahay, “Use ball indentation
    technique to the determine the change of tensile properties of SS316L
    steel due to cold rolling”, Materials Letters, 59, pp. 2246-2251, 2005.
    43. Taylor Lyman, Howard E. Boyer, “Metallography, Structure and
    Phase Diagrams”, Metals Handbook, Vol. 8, pp. 124, 1973.
    44. D. J. Lloyd, “The Deformation of commercial aluminum-magnesium
    alloys”, Metall. Trans. A, Vol. 11A, pp. 1287-1294, 1980.
    45. 鐘長偉,「加工硬化型Al-Mg合金振動破壞特性之預變量及含Mg
    量效應探討」,國立成功大學材料及工程學系,碩士論文,22頁,
    民國92年。
    46. M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, A. C. Nunes,
    “Flow patterns during friction stir welding”, Materials
    Characterization, 49, pp. 95-101, 2003.
    47. Won-Bae Lee, Yun-Mo Yeon, Seung-Boo Jung, “The joint properties
    of dissimilar formed Al alloys by friction stir welding according to
    the fixed location of materials”, Scripta Materialia, 49, pp. 423-428,
    2003.

    下載圖示 校內:2007-07-31公開
    校外:2007-07-31公開
    QR CODE