| 研究生: |
王凱平 Wang, Kai-Ping |
|---|---|
| 論文名稱: |
奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究 Correlation between Pore Structure and Electrochemical Capacitance of Nanoporous Carbon Electrodes |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 電化學電容器 、活性碳 、碳電極 、中孔洞碳材 |
| 外文關鍵詞: | Mesoporous carbon, Carbon electrode, Electrochemical capacitor, Activated carbon |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以孔洞二氧化矽當作模版來製備孔洞碳材,是一個簡易且可應用的方法。在電容器的應用上,由於碳電極具有高表面積及高導電性,因此碳材可說是非常好的一個電極材料。
在物理活化後以電化學測試了解碳電極的電化學行為,循環伏安法可以了解碳電極具有理想的電容行為,定電流充放電則計算出碳材的電容量及電容器的總內電阻,而交流阻抗分析得知碳材孔隙的阻力值。從結果可以知道中孔洞碳電極一開始隨比表面積增加而增加,而後來趨向極限值,最後因阻力上升而使電容量些微下降,單位面積電容量則是達到最大值後下降的非常明顯;在與粒狀活性碳比較後,不管在電容量或是單位面積的電容量都比中孔洞碳材來的低一些。由上述可以證明中孔提供了一個電解質擴散的孔道,而這個孔道可使電雙層的完整形成的更加快速,因此在高速充放電時,中孔洞碳材依舊擁有很高的電容量。另外中孔洞碳材在硝酸處理後,可以提高30%的電容量。
為了在高速充放電時依舊維持應有的電容量,除了以中孔來當作孔道外,我們以活性碳纖維布磨成的粉末來當作電極,由於活性碳纖維布的微孔有一個特點,就是微孔長度比一般活性碳的微孔長度短,所以當電解質在孔洞內擴散時,比較容易到達孔洞的盡頭,這也就是說所有微孔的面積都可以順利被電雙層利用到,因此纖維布粉活性碳也是一個可以使用在高速充放電的碳材料。
The present work has demonstrated a simple and applicable method for preparing mesoporous carbon with mesoporous silica as template. The carbon was shown to be a potential material as electrochemical capacitor electrode of its high surface area and electric conductivity.
After activation of the mesoporous carbon, the resulting carbon was subjected to electrochemical analysis, which included cyclic voltammetry, galvanostatic chargeand discharge, and a.c. impedance measurement. The specific capacitance of mesoporous carbon electrode increased with surface area to reach a limit value, and then decreased with further surface area increase. Mesoporous carbon was higher than granular activated carbon on the specific capacitance and the capacitance per unit area. It indicated that mesoporous carbon has supplied a pathway for electrolyte diffusion, and this would speed up the complete formation of double layer. Therefore, mesoporous carbon possessed high capacitance even at high charge/discharge rates. In addition, the capacitance of the mesoporous carbon can be improved up to 30% after nitric acid treatment.
Carbon powder derived from activated carbon cloth was also shown to own high capacitance as well The length of micropores in the powder was shorter than that in activated carbon powder, leading to a high degree of pore accessibility to the electrolyte ions The high capacitance was still preserred at high charge/discharge rates.
1. 二○○○年第四屆台北國際電池研討會會刊
2. S. B. Chakarvarti, J. Vetter, Nucl. Instrum. Meth. Phys. Recs., B62, 109
(1991)
3. G. L. Hornyak, C. R. Martin, J. Phys. Chem. B., 101, 1548 (1997)
4. M. Nishizawa, V. P. Menon, C. R. Martin, Science, 268, 700 (1995).
5. B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Chem. Mater., 9, 875 (1997)
6. C. R. Martin, Adv. Mater., 3, 457(1991)
7. L. S. Van Dyke, C. R. Martin, Langmuir, 6, 1123 (1990)
8. R. Ryoo, S. H. Joo, and S. Jun, J. Phys. Chem. B, 103, 7743 (1999)
9. J. Lee, S. Yoon, T. Hyeon, S.M. Oh, and K-B Kim, Chem. Commun., 21, 2177
(1999).
10. J. Lee, S. Yoon, S. M. Oh, C. H. Shin and T. Hyeon, Adv. Mater., 12, 359
(2000)
11. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O.
Terasaki, J. Am. Chem. Soc., 122, 10712 (2000).
12. R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Adv. Mater., 13, 677 (2001)
13. S. H. Joo, S. Jun, 44-45, 153 (2000)
14. J-S Yu , S. B. Yoon, G. S. Chai, Carbon, 39,1442 (2001)
15. J-S Lee, S. H. Joo, R. Ryoo, J. Am. Chem. Soc., 124,1156 (2002).
16. L. A. Solovyov, A. N. Shmakov, V. I. Zaikovskii, S. H. Joo, R. Ryoo,
Carbon, 40,2477 (2002).
17. M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O.
Terasaki, S. H. Joo, R. Ryoo, J. Phys. Chem. B, 106, 1256 (2002).
18. L. A. Solovyov, V. I. Zaikovskii, A. N. Shmakov, O.V. Belousov, R. Ryoo,
J. Phys. Chem. B., 106, 12198 (2002)
19. T. H. Brian, F. B. Christopher, and S. Andreas, Science, 281, 538 (1998)
20. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angew. Chem. Int. Ed., 38, 56-
77 (1999)
21. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec , Adv. Mater., 13, 677-81
(2001)
22. Suuberg, E.M.; Wójtowicz, M.; Calo, J.M.; 22nd Symposium (International)
on Combustion, Pittsburgh: The Combustion Insitute, p. 79, 1988.
23. Lewis, I. C., Carbon, 20, 519, 1982.
24. Wigmans, T., Carbon 27, 13, 1989.
25. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties,
John Wiley & Sons: New York, (1988).
26. M. Suzuki, Adsorption Engineering, Elsevier: Tokyo, (1990).
27. J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry
and Adsorption from Solution, Wiley-Vch: New York, (1998).
28. S. Brunauer, “The Adsorption of Gases and Vapor. Vol. I, Physical
Adsorption ”, Princeton University, Princeton, Now York (1943)
29. V. Alfredsson, M. W. Anderson, Chem. Mater., 8, 1141 (1996)
30. A. H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970.
31. M. Kruk, and M. Jaroniec, J. Phys. Chem. B, 104, 7960 (2000)
32. H. D. Young, Physics, Addison-Wesley Publishing Co.: New York, (1992).
33. A. J. Bard, and L. R. Faulkner, Electrochemical Principles, Methods, and
Applications, Oxford University, Britain, (1996).
34. D. Qu, and H. Shi, J. Power Sources 74, 99 (1998).
35. C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, Wiley-Vch:
New York, (1998).
36. J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry
and Adsorption from Solution, Wiley-Vch: New York, (1998)
37. Bard, A. J.; Faulkner, L. R., Electrochemical Methods Fundamental and
Application, John Wiley & Sons, Canada, 1980.
38. S. Lowell and J. E. Shields, Power Surface Area and Porosity, 3rd ed.,
Chapman&Hall, New York(1991)
39. S. Mann, Angew. Chem. Int. Ed., 39, 3392 (2000).
40. 余樹楨, 晶體之結構與性質, 渤海堂文化公司印行, 台北(1989)
41. Ind. Eng. Chem. Res. 1996, 35, 4043-4049
42. Teng, H.; Ho, J.-A.; Hsu, Y.-F.; Hsieh, C.-T.; Ind. Eng. Chem. Res., 35
(11), 4043-4049, 1996.
43. Tarazona, P.; Marconi, U.M.B.; Evans, R. Mol. Phys. 60, 543, (1987).
44. Hsin-Yu Liu, Kai-Ping Wang, Hsisheng Teng, Carbon, 43, 559–566, (2005)
45. Nian, Y.-R. and Teng, H., Journal of The Electrochemical Society, 149(8),
A1008-A1014, (2002)
46. R. de Levie, Electrochim. Acta., 8, 751 (1963)
47. L. G. Austin, E. G. Gagnon, J. Electrochem. Soc., 120, 251 (1973).
48. B. E. Conway,’’Electrochemical Supercapacitor’’, Kluwer
Academic/Plenum Publishers, New York, 1999.
49. C-T Hsieh, H. Teng, Carbon, 38, 863 (2000).
50. A. Nishino, J Power Source, 60,137, (1996).
51. H. Keiser, K.D. Beccu, M.A. Gutjahr, Electrochim. Acta, 21, 539, (1976).
52. X. Liu, T. Osaka, J. Electrochem. Soc., 143, 12 (1996)
53. T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, J. Power Sources, 60,249-
253 (1996).
54. R. Kötz, M. Carlen, Electrochim. acta., 45, 2483 (2000).
55. S. Yoon, J. Lee, T. Hyeon, S. M. Oh, J. Electrochem. Soc., 147, 2507
(2000).
56. X. Liu and T. Osaka, J. Electrochem. Soc., 144, 3066 (1997).
57. Marsh H., Rodríguez-Reinoso F., 'Sciences of Carbon Materials' 2000