| 研究生: |
吳楷銘 Wu, Kai-Ming |
|---|---|
| 論文名稱: |
含不同烷基鏈段膽固醇光敏性有機凝膠體之合成與光學特性探討 Synthesis and photo-behaviors of organogelators with various alkyl chains derived from cholesterol |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 自組裝 、光敏性 、超分子凝膠 、光學活性 、液晶複合材料 |
| 外文關鍵詞: | self-assembly, photosenisitive, supramolecular gels, chirality, liquid crystalline composites |
| 相關次數: | 點閱:165 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了探討含不同烷基鏈段對於自組裝系統的影響,本研究致力於含不同烷基鏈段膽固醇光敏性有機凝膠體之合成與光學特性探討,分別為:Cholesteryl (4-nitro-azobenzene-4′-oxy) carbonate (NA0)、Cholesteryl 3-(4-nitro-azobenzene-4′-oxy) propyl carbonate (NA3)、Cholesteryl 6-(4-nitro-azobenzene-4′-oxy) hexyl carbonate (NA6)、Cholesteryl 11-(4-nitro-azobenzene-4′-oxy) undecyl carbonate (NA11)。經凝膠化能力測試後發現,除了 NA11 外皆具有凝膠化的能力,而且以 NA0 的凝膠化能力為最佳。結果顯示,雖然長碳鏈段可增加凡德瓦力,但在此系統中,則容易造成析出而不利於膠體化。為了探討超分子凝膠的微結構,使用 SEM、 TEM 進行觀察,發現到分子可自組裝成螺旋狀的纖維結構,並且可進一步交聯成三維的網狀結構,而形成超分子凝膠。本研究所合成的化合物因為具有偶氮苯基團,理論上,可利用紫外光與可見光來進行溶液態與凝膠態的調控,結果發現只有在非極性溶液下所形成的凝膠可利用紫外光與可見光進行溶液態與凝膠態轉換。結果顯示,在極性溶液下與非極性溶液下,分子存在著不同的自組裝排列,並以 1H-NMR、 FTIR、 UV-Vis spectra 證明。此外,為了探討分子的液晶特性,也利用了 DSC 與 POM 來進行量測。最後將這些具有光學活性的化合物與市售液晶 HSG 22200 進行摻混而配置成液晶物理複合材料,觀察其液晶相的變化。
To investigate the effect of alkyl chain length on the self-assembly of molecules, a series of cholesteric photosensitive organogelators consisting of Cholesteryl (4-nitro-azobenzene-4′-oxy) carbonate (NA0), Cholesteryl 3-(4-nitro-azobenzene-4′-oxy) propyl carbonate (NA3), Cholesteryl 6-(4-nitro-azobenzene-4′-oxy) hexyl carbonate (NA6), and Cholesteryl 11-(4-nitro-azobenzene-4′-oxy) undecyl carbonate (NA11) were synthesized. From the results of gelation in various solvents, it was found that all NA derivatives reveal gelation behavior, except NA11. The results suggest that longer alkyl chain length may increase van Der Waals force, however, simultaneously decrease the formation of self-assembled gels. In addition, SEM and TEM were used to study the micro structure of the self-assembled constructions. Some helical structures via supramolecular assembly and three dimensional networks were observed. The synthesized NA derivatives contain a photosensitive azobenzene group. Theoretically, a stimuli induced reversible gel-solution transition should be observed. Surprisingly, the UV-vis induced reversible gel-solution transition can only be seen in nonpolar solvents. In polar solvents, no any reversible transition is seen. The results are ascribed to the different assembly of molecules in the two systems. The results were confirmed using 1H-NMR、FTIR、and UV-Vis analysis. Furthermore, liquid crystalline properties of the synthesized NA molecules were investigated using DSC and POM. Optical properties and variation of cholesteric textures of liquid crystalline composites via mixing commercially available HSG22200 Nematic liquid crystal with the synthesized chiral NA derivatives were studied.
[1] J. M. Lehn. Supramolecular chemistry-Scope and perspectives molecules-supermolecules-molecular devices. Nobel Lecture (1987).
[2] 邱泰翔,環糊精-單體包容錯合物自組裝集合體及所形成螺旋分子之製備及特性探討,國立成功大學化學工程研究所碩士論文,(2008)。
[3] Xia Ran, Haitao Wang, Peng Zhang, Binglian Bai, Chengxiao Zhao, Zhixin Yu and Min Li*. Photo-induced fiber–vesicle morphological change in an organogel based on an azophenyl hydrazide derivative. Soft Matter. 7, 8561–8566 (2011).
[4] N. M. Sangeetha and U. Maitra. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 34, 821–836 (2005).
[5] K. E. Schwiebert, J. C. MacDonald, and G. M. Whitesides.
Engineering the solid state with 2-benzimidazolones. J. Am. Chem. Soc. 118, 4018–4029 (1996).
[6] L. S. Mende, R. H. Friend, and J. D. MacKenzie. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. 293, 1119–1122 (2001).
[7] E. L. Thomas. The ABCs of self-assembly. Science. 286, 1307 (1999).
[8] S. Forster, Thomas Plantenberg. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed. 41, 688–714 (2002).
[9] H. Nabika, B. Takimoto, and K. Murakoshi. Molecular separation in the lipid bilayer medium: electrophoretic and self-spreading approaches. Anal Bioanal Chem. 391, 2497–2506 (2008).
[10] G. M.Whitesides. Patterned self-assembled monolayers and meso-scale phenomena. Acc. Chem. Res. 28, 219–226 (1995).
[11] V.Grantcharova, D. Baker, and A. L. Horwich. Mechanisms of protein folding, Curr. Opin. Struct. Bio. 11, 70–82 (2001).
[12] J. H. Liu, Y. H. Chiu, and T. H. Chiu. Fabrication and characterization of self-Assembled β-cyclodextrin threaded
monomers and induced helical polymers. Macromolecules. 42,
3715–3720 (2009).
[13] J. Berg, J. Tymoczko and L. Stryer. Biochemistry. W. H. Freeman and Company (2002).
[14] K. J. Edwards, D. G. Brown, N. Spink, J. V. Skelly, S. Neidle. Molecular structure of the B-DNA dodecamer d
(CGCAAATTTGCG)2. An examination of propeller twist and
minor-groove water structure at 2.2 Å resolution. J Mol Biol. 226(4), 1161–1173 (1992).
[15] Y. Yan, Y. Y. Lin, Y. Qiao and J. B. Huang. Construction and application of tunable one-dimensional soft supramolecular assemblies. Soft Matter . 7, 6385–6398 (2011).
[16] X. Zhang and C. Wang. Supramolecular amphiphiles. Chem.Soc. Rev. 40, 94–101 (2011).
[17] Gopal Chandra Maity. Low molecular mass gelators of organic liquids. Journal of Physical Sciences.11, 156–171 (2007).
[18] 李俊賢,含N, N'-二苯吡啶醯胺凝膠分子其自組裝行為硏究,國立臺灣師範大學化學研究所碩士論文,(2009)。
[19] 呂政錡,含Urea基團Triazine與Triarylamine衍生物之新型凝膠分子於不同溶劑下凝集效應與光學性質影響之探討,國立臺灣科技大學高分子工程研究所博士論文,(2008)。
[20] D. J. Abdallah, and R. G. Weiss. n-Alkanes gel n- Alkanes (and many other organic liquids). Langmuir. 16, 352–355 ( 2000).
[21] P. Terech, and R. G. Weiss. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3159 (1997).
[22] D. J. Abdallah and R. G. Weiss. Organogels and low molecular mass organic gelators. Adv. Mater. 12, 1237–1247 (2000).
[23] A. T. Polishuk. J. Am. Soc. Lubn. Eng. 33, 133 (1977).
[24] T. Brotin, R. Utermohlen, F. Fages, H. Bouas-Laurent, J. P. Desvergne. A novel small molecular luminescent gelling agent for alcohols. J. Chem. Soc., Chem. Commun. 416–418 (1991).
[25] C.Wang, D. Q. Zhang, J. F. Xiang and D. B. Zhu. New
organogels based on an anthracene derivative with one urea group and its photodimer: fluorescence enhancement after gelation. Langmuir. 23, 9195–9200 (2007).
[26] P.Terech. Reversible polymeric gels and related systems. American Chemical Society: Washington. DC, Chapter 9 (1987).
[27] M. Zinic, F. Vogtle and F. Fages. Cholesterol-based gelators. Top Curr Chem. 256, 39–76 (2005).
[28] Y. C. Lin and R. G.Weiss. A novel gelator of organic liquids and the properties of its gels. Macromolecules. 20, 414–417 (1987).
[29] Y. Lin, B. Kachar and R. G. Weiss. Novel family of gelators of organic fluids and the structure of their gels. J. Am. Chem. Soc. 111, 5542–5551 (1989).
[30] K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komri, F. Ohseto, K. Ueda and S. Shinkai. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc. 116, 6664–6676 (1994).
[31] S. Abraham, R. K. Vijayaraghavan and S. Das. Tuning
microstructures in organogels: gelation and spectroscopic
properties of mono- and bis-cholesterol-linked diphenylbutadiene derivatives. Langmuir. 25, 8507–8513 (2009).
[32] Yeping Wu, Si Wu, Xiujie Tian, Xin Wang, Wenxuan Wu, Gang Zou and Qijin Zhang*. Photoinduced reversible gel–sol transitions of dicholesterol-linked azobenzene derivatives through breaking and reforming of van der Waals interactions. Soft Matter. 7, 716–721 (2011).
[33] J.M. Lehn, M. Mascal, and J. Fischer. Molecular recognition directed self-assembly of ordered supramolecular strands by cocrystallization of complementary molecular components. Chem Commun. 479–481 (1990).
[34] Yifeng Zhou, Miao Xu, Tao Yi,* Shuzhang Xiao, Zhiguo Zhou, Fuyou Li, and Chunhui Huang*. Morphology-tunable and photoresponsive properties in a self-assembled two-component gel system. Langmuir. 23, 202–208 (2007).
[35] H. F. Yu and T. Kobayashi. Photoresponsive block copolymers containing azobenzenes and other chromophores. Molecules. 15, 570–603 (2010).
[36] H. M. Dhammika Bandara and Shawn C. Burdette*. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).
[37] Xiao wei Pei, Antony Fernandes, Bertrand Mathy, Xavier Laloyaux, Bernard Nysten, Olivier Riant, and Alain M. Jonas*. Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on Silicon. Langmuir. 27, 9403–9412 (2011).
[38] H. K. Lee, A. Kanazawa, T. Shiono and T. Ikeda. All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal. Chem. Mater. 10, 1402–1407 (1998).
[39] M. Moriyama, N. Mizoshita, T. Yokota, K. Kishimoto and T. Kato. Photoresponsive anisotropic soft solids: liquid-crystalline physical gels based on a chiral photochromic gelator. Adv. Mater. 15, 1335–1338 (2003).
[40] Vandana Bhalla*, Hardev Singh, Manoj Kumar, and S. Krishna Prasad. Triazole-modified triphenylene derivative: self-assembly and sensing applications. Langmuir. 27 (24), 15275–15281 (2011).
[41] Y. Y. Lin, Y. Qiao, C. Gao, P. Tang, Y. Liu, Z. Li, Y. Yan and J. Huang. Tunable one-dimensional helical nanostructures: from supramolecular self-assemblies to silica nanomaterials. Chem. Mater. 22, 6711–6717 (2010).
[42] 楊博智,含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討,國立成功大學化學工程研究所碩士論文 (2003)。
[43] Po-Chih Yang* , Ya-Ling Lu, Chung-Yuan Li. Synthesis and characterization of photoactive azobenzene-based chromophores containing a bulky cholesteryl moiety. Journal of Molecular Structure. 1015, 129–137 (2010).
[44] 陳鳳儀,光調變性膽固醇有基凝膠體之合成與超分子特性探討國立成功大學化學工程研究所碩士論文 (2012)。
[45] Y. Y. Lin, A. Wang, Y. Qiao, C. Gao, M. Drechsler, J. Ye, Y. Yan and J. Huang. Rationally designed helical nanofibers via multiple non-covalent interactions: fabrication and modulation. Soft Matter. 6, 2031–2036 (2010).
[46] K. Murata, M. Aoki, T. Nishi, A. Ikeda and S. Shinkai. New choleterol-based gelators with light- and metal-reponsive functions. J. Chem. Soc., Chem. Commun. 1715–1718 (1991).
[47] T. Sasaki, T. Ikeda and K. Ichimura. Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid crystalline polymer matrices. Macromolecules. 26, 151–154 (1993).
[48] Pengfei Duan, Yuangang Li, Liangchun Li, Jingen Deng, and Minghua Liu*. Multiresponsive chiroptical switch of an azobenzene-containing lipid: solvent, temperature, and photoregulated supramolecular chirality. J. Phys. Chem. B. 115, 3322–3329 (2011).
[49] 松本正一、角田市良,劉瑞祥譯,液晶之基礎與應用,國立編譯館(1996)。
[50] D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill. “Handbook of Liquid Crystals”, Vol. 2A, Weinhein, Wiley-VCH (1998).
[51] 楊博智,光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討,國立成功大學化學工程研究所博士論文 (2007)。