簡易檢索 / 詳目顯示

研究生: 蔡岳甫
Tsai, Yueh-Fu
論文名稱: 奈米碳球於相異流體流場內運動之探討
Study fullerene movement in the different fluid flow field
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 43
中文關鍵詞: 奈米碳球低雷諾數流理論史托克定律
外文關鍵詞: fullerene, LowReynolds number theory, stoke’s Law
相關次數: 點閱:56下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分子動力學方法模擬奈米碳簇於流體介質中的流場作用於奈米碳簇的阻力現象,首先將奈米碳球置於一流體之自由流場中,其奈米碳球在水分子流場中平移所造成之阻力變化,並分別以不同溫度討論溫度對阻力之影響值,再將流體分子置換成氫氣(H2)、二氧化碳(CO2)、甲烷(CH4)並將結果與低雷諾數理論做相互印證。本文發現水分子在溫度爬升的過程中,其阻力值益趨上昇,與巨觀流場現象大為相異,而置換不同的流體介質後發現,在對碳簇類黏附性高的氫氣分子流場中,其阻力在一開始上升之後便慢慢逼近於0,與巨觀流場中黏性越高阻力越大的現象完全相反,流場趨近於無黏性流現象。

    In this paper, molecular dynamics simulates fullerene in the fluid medium, on the flow resistance of the phenomenon , fullerene were placed at the free flow first, move in fluid Medium at different temperatures and the differences of their resistance .We compare the result with Low Reynolds number theory. This will be the fullerene (C60) in the nanometer size of the free flow of movement with the resistance changes, different temperature . Then we replace the fluid molecules into hydrogen (H2), carbon dioxide (CO2), methane (CH4),compare the drug force curve with all of them.We found that the drug curve in water rising with more and more high temperature,it run in the opposite direction with macroscopic we see,and then we found that the drug curve in hydrogen dropping down about 0 with time.We knew that hydrogen being Adsorption with carbon nano-cluster,but it’s totally different with macroscopic.

    奈米碳球於不同流體介質流場內運動之行為探討 摘要…………………………………………………………………………..II 致謝………………………………………………………………………….IV 第一章 緒論 1-1 奈米碳球之簡介....................................................................................1 1-2奈米碳球的製備......................................................................................2 1-2-1電弧放電法……………………………………………………………3 1-2-2 燃燒法…………………………………………………………..……3 1-2-3化學氣相沉積………………………………………………..……….4 1-3文獻回顧………………………………………………………………..4 1-4 研究動機及目的……………………………………………………10 模型建構方法 2-1 Material Explorer分子動力學軟體介紹.............................................10 2-2 模型建立............................................................................................11 2-3 分子動力學勢能選取------------------------------------------------------17 2-3-1 Lennard-Jones勢能………………………………………...…………17 2-3-2 ME3Organic勢能..…………………………………………………………………….18 第三章 古典理論 3-1 低雷諾數流理論....................................................................................22 3-2 奈米碳球流場配置模型..……………………………………………....26 第四章 分析與討論 4-1溫度對阻力變化之影響……………………………….……………......29 4-2 壓差阻力與黏滯力之釐清.....................................................................31 4-3不同流體介質分子對碳球阻力之影響.................................................33 4-4 探討碳球周遭分子遠離碳球情形 ……………………………………36 第五章結論…………………………………………………………………40 第六章未來展望……………………………………………………………40 參考文獻…………………………………………………………………….41 圖目錄 圖1-1、奈米碳管於水分子流場中沖刷模擬示意圖……………….…….8 圖1-2 分子流體力學與連續體理論結合之示意圖……………….……...8 圖1-3 以穿透式電子顯微鏡觀察填充於碳管內之C60行為…………….8 圖2-1 Material Explorer軟體 ………………………………………………….………………11 圖2-2 Nanotube Modeler軟體建構圖 ……………………………………………………12 圖2-3 Material Explorer介面圖圖 …………………………………..………………………12 圖2-4 轉換分子符號示意………………… …………………………………………………….13 圖2-5 建立碳球示意圖 ………………………………………………………………………….14 圖2-6 建立水分子流場步驟示意圖 ……………………………………………………….15 圖2-7 隨機水分子流場布置圖 ……………………………………………………………….15 圖2-8 選定相關勢能之示意圖 ……………………………………………………………….16 圖2-9 設定環境條件與模擬過程中運算之情形 …………………………………….17 圖2-10 Lennard-Jones勢能函數曲線…………………………………………………………………18 圖2-11 鍵長項示意圖………………………………………………………………………………19 圖2-12 鍵角項示意圖………………………………………………………………………………19 圖2-13、扭轉角項示意圖…………………………………………………………………………..20 圖2-14、離平面項示意圖…………………………………………………………….…….20 圖3-1 球面上分力變量示意圖………………………………………….24 圖3-1 碳球置於流場示意圖…………………………………………….26 圖3-2 置換不同流體介質分子示意圖…………………………….……27 圖3-3 碳原子取樣方法示意圖…………………………………….……28 圖4-1 水分子流場碳球阻力曲線………………………………….……30 圖4-2 水分子碳球流場阻力隨溫度變化之曲線………………….……30 圖 4-3 水黏度圖………………………………………………….….…...31 圖4-4迎流面與背流面之阻力差異圖………………………….………32 圖4-5氫氣分子流場阻力示意圖…………………………………...……33 圖4-6二氧化碳分子流場碳球阻力曲線圖……………………….…….34 圖4-7甲烷分子流場碳球阻力曲線圖......................................................35 圖4-8碳球隨時間跑動與固定水分子拉長之距離示意圖......................36 圖4-9碳球隨時間跑動與選定氫氣分子拉長之距離示意圖..................38 表目錄 表 3-1 ME3Organic勢能參數表…………………………………………………….……….21

    1. Lieber, T.W.O.J.L.H.P.K.C.M., Structure and electronic properties of carbon nanotubes. JOURNAL OF PHYSICAL CHEMISTRY B, 2000. 104: p. 2794-2809.
    2. Amelinckx, S., Lucas, A. and Lambin, P., Electron diffraction and microscopy of nanotubes. REPORTS ON PROGRESS IN PHYSICS, 1999. 62: p. 1471-1524.
    3. Kroto, H.W., Heath J.R., O'Brien S.C., Curl, R.F. and Smalley, R.E, C60:Buckminster. Nature, 1985. 318: p. 162-163.
    4. Heinbuch, U. and J. Fischer, LIQUID FLOW IN PORES - SLIP, NO-SLIP, OR MULTILAYER STICKING. Physical Review A, 1989. 40(2): p. 1144-1146.
    5. Krstschmer, W.F., K.; Huffman, R. Chem, Phys. Lerr, 1990. 170: p. 167.
    6. Kriitschmer, W.L., L.D.; Fostiropoulos, K.; Huffman, D. R, Nature, 1990. 347: p. 354.
    7. Yokomichi, H., Matoba, M., Sakima, H., Ichihara, M. and Sakai, F, Synthesis of carbon nanotubes by arc discharge in CF4 gas atmosphere. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998. 37: p. 6492-6496.
    8. Ajayan, P.M., Redlich, P. and Ruhle, M., Balance of graphite deposition and multishell carbon nanotube growth in the carbon arc discharge. JOURNAL OF MATERIALS RESEARCH, 1997. 12: p. 244-252.
    9. Shi, Z.J., Lian, Y.F., Liao, F.H., Zhou, X.H., Gu, Z.N., Zhang, Y., Iijima, S., Li, H.D., Yue, K.T. and Zhang, S.L., Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2000. 61: p. 1031-1036.
    10. Osvath, Z., Koos, A.A., Horvath, Z.E., Gyulai, J., Benito, A.M., Martinez, M.T., Maser, W. and Biro, L.P., STM observation of asymmetrical Y-branched carbon nanotubes and nano-knees produced by the arc Discharge method. MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2003. 23: p. 561-564.
    11. Zhu, H.W., Jiang, B., Xu, C.L. and Wu, D.H., Synthesis of high quality single-walled carbon nanotube silks by the arc discharge technique. JOURNAL OF PHYSICAL CHEMISTRY B. 107: p. 6514-6518.
    12. Yudasaka, M., Kikuchi, R., Ohki, Y. and Yoshimura, S, Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. CARBON, 1997. 35: p. 195-201.
    13. Cheung, C.L., Hafner, J.H. and Lieber, C.M. , Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc Natl Acad Sci U S A, 2000. 97: p. 3809-3813.
    14. Araki, H., Kajii, H. and Yoshino, K., Effects of substrate materials on growth of carbon nanotubes by chemical vapor deposition using metal-phthalocyanines. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1999. 2: p. 1351-1353.
    15. Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C. and Derbyshire, F., Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letter, 1999. 315: p. 25-30.
    16. Han, J.H., Moon, B.S., Yang, W.S., Yoo, J.B. and Park, C.Y, Growth characteristics of carbon nanotubes by plasma enhanced hot filament chemical vapor deposition. Surface and Coatings Technology, 2000. 131: p. 93-97.
    17. Ikuno, T., Takahashi, S., Kamada, K., Ohkura, S., Honda, S.I., Katayama, M.,Hirao, T. and Oura, K., Influence of the plasma condition on the morphology of vertically aligned carbon nanotube films grown by RF plasma chemical vapor deposition. Surface Review and Letters, 2003. 2003: p. 611-615.
    18. G., M.J.Y.M.M.Y.L.R.a.J., Saniesteban, Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letters, 1993. 62: p. 202.
    19. 周長彬、吳文發, 奈米碳管合成與機械性質研究. 2005.
    20. Qin, L.C., Zhou, D., Krauss, A.R. and Gruen, D.M., Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. APPLIED PHYSICS LETTERS, 1998. 72: p. 3437-3439.
    21. Morriss, D.J.E.a.G.P., Statistical Mechanics of NonEquilibrium Liquids. Academic, 1990.
    22. Todd, B.D., D.J. Evans, and P.J. Daivis, PRESSURE TENSOR FOR INHOMOGENEOUS FLUIDS. Physical Review E, 1995. 52(2): p. 1627-1638.
    23. Jabbarzadeh, A., J.D. Atkinson, and R.I. Tanner, Rheological properties of thin liquid films by molecular dynamics simulations. Journal of Non-Newtonian Fluid Mechanics, 1997. 69(2-3): p. 169-193.
    24. Jabbarzadeh, A., J.D. Atkinson, and R.I. Tanner, Nanorheology of molecularly thin films of n-hexadecane in Couette shear flow by molecular dynamics simulation. Journal of Non-Newtonian Fluid Mechanics, 1998. 77(1-2): p. 53-78.
    25. Hu, Y.Z., et al., Simulation of lubricant rheology in thin film lubrication .1. Simulation of Poiseuille flow. Wear, 1996. 196(1-2): p. 243-248.
    26. Hu, Y.Z., et al., Simulation of lubricant Rheology in thin film lubrication .2. Simulation of Couette flow. Wear, 1996. 196(1-2): p. 249-253.
    27. Thompson, P.A. and M.O. Robbins, SHEAR-FLOW NEAR SOLIDS - EPITAXIAL ORDER AND FLOW BOUNDARY-CONDITIONS. Physical Review A, 1990. 41(12): p. 6830-6837.
    28. Jabbarzadeh, A., J.D. Atkinson, and R.I. Tanner, Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls. Physical Review E, 2000. 61(1): p. 690-699.
    29. Koplik, J. and J.R. Banavar, CORNER FLOW IN THE SLIDING PLATE PROBLEM. Physics of Fluids, 1995. 7(12): p. 3118-3125.
    30. Koplik, J. and J.R. Banavar, Reentrant corner flows of Newtonian and non-Newtonian fluids. Journal of Rheology, 1997. 41(3): p. 787-805.
    31. Travis, K.P., B.D. Todd, and D.J. Evans, Departure from Navier-Stokes hydrodynamics in confined liquids. Physical Review E, 1997. 55(4): p. 4288-4295.
    32. Travis, K.P. and K.E. Gubbins, Poiseuille flow of Lennard-Jones fluids in narrow slit pores. Journal of Chemical Physics, 2000. 112(4): p. 1984-1994.
    33. K.-C. Pong , C.-M.H., J. Liu and Y.-C. Tai, Non-linear pressure distribution in uniform microchannel. Appl. Microfabrication Fluid Mech, 1994. 197: p. 51.
    34. Pfahler, J., Harley, J., Bau, H., and Zemel, J. N., Gas and Liquid Flow in small Channels. Micromechanical Sensors, Actuators, and System, 1991. 32.
    35. Hummer, G., Rasaiah, J.C., Noworyta, J.P., Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001. 414,6860: p. 188-190.
    36. Yu, H.Q., Li, H., Zhang, J.X. , Liu, X.F. and Liew, K.M., Possibility of driving water molecules along a single-walled carbon nanotube using methane molecules. CARBON, 2010. 48: p. 417-423.
    37. Lu Hang-Jun, G.X.-J., Wang Chun-Lei, Fang Hai-Ping and Wang Rong-Zheng, Effect of vibration on water transport through carbon nanotubes. CHINESE PHYSICS LETTERS, 2008. 25: p. 1145-1148.
    38. Corry, B., Designing carbon nanotube membranes for efficient water desalination. JOURNAL OF PHYSICAL CHEMISTRY B, 2008: p. 1427-1434.
    39. Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M. and Koratkar, N, Polarity-Dependent Electrochemically Controlled Transport of Water through
    Carbon Nanotube Membranes. Nano Letters, 2007. 7: p. 697-702.
    40. Advani, W.T.a.S.G., Non-Equilibrium Molecular Dynamics Simulation of Water Flow around a
    Carbon Nanotube. computer modeling in engineering & sciences, 2007. 22(1): p. 31-40.
    41. Advani, W.T.a.S.G., Dynamic Simulation of Carbon Nanotubes in Simple Shear Flow. computer modeling in engineering & sciences.
    42. M, M., Filling single-wall carbon nanotubes. NANO LETTERS, 2002. 5: p. 873-878.
    43. 富勒烯在化妝品中的應用. 精細與專用化學品, 2008. 13.
    44. Limited, F., User’s Manual of Materials Explorer for Windos,. 2002.

    下載圖示 校內:2013-09-07公開
    校外:2013-09-07公開
    QR CODE