| 研究生: |
唐家福 Tang, Jia-Fu |
|---|---|
| 論文名稱: |
調控有機太陽能電池主動層微結構之研究 Studies of microstructural manipulation of active layer for organic solar cells |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 有機太陽能電池 、聚(3-己烷噻吩) 、茚-碳六十的雙加成物 、添加劑 |
| 外文關鍵詞: | Organic solar cell, Poly(3-hexylthiophene), Solvent additive |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以P型材料聚(3-己烷噻吩)[Poly(3-hexylthiophene), P3HT]混摻N型材料茚-碳六十的雙加成物(Indene-C60 Bisadduct, IC60BA)作為主動層,利用添加劑與熱退火的方式調控主動層微結構,製作有機太陽能電池。主動層的主溶劑為氯苯,分別加入3 v%之二碘辛烷 (1,8-Diiodooctane, DIO)、二氯戊烷 (1,5-Dichloropentane, DCP)、二溴丁烷 (1,4-Dibromobutane, DBB)作為添加劑。利用X光繞射光譜儀、原子力顯微鏡、吸收光譜儀、光致螢光光譜儀與拉曼光譜儀等分析主動層薄膜,探討添加劑對主動層微結構變化與元件電性之影響,也進一步對主動層進行熱退火,探討加上熱退火後,主動層微結構變化對電性之影響。
元件電性分析結果顯示,在主動層未經熱退火的情況下,加入添加劑DBB、DCP與DIO後,元件的短路電流密度與填充因子皆獲得提升,但元件的開路電壓卻降低。將主動層進行熱退火後,元件的短路電流密度、填充因子與開路電壓均得到提升。
經由分析得知,主動層加入添加劑後,P3HT的縱向結晶稍微變長且結晶性變佳,主動層相分離程度變得明顯,主動層可形成有效的載子路徑,因此主動層微結構獲得改善,元件的短路電流密度與填充因子獲得提升。而非結晶的P3HT與IC60BA的交互作用變弱,非結晶P3HT之有效共軛鏈長變長,降低P-N接面的內建電場,使元件的開路電壓降低。其中主動層若加入較高沸點之添加劑DIO,產生的相分離程度較嚴重,非結晶P3HT與IC60BA的交互作用較弱,所以元件的電性都較主動層加入低沸點添加劑的元件差。
未加入添加劑的主動層進行熱退火後,P3HT的縱向結晶變長且結晶變好,結晶P3HT的均勻性變好,主動層可形成連續的載子傳輸路徑,因此主動層微結構獲得改善,提升了元件的短路電流密度與填充因子,而非結晶的P3HT與IC60BA的交互作用變弱,非結晶P3HT之有效共軛鏈長變長,使元件的開路電壓降低。加入添加劑的主動層進行熱退火後,P3HT的縱向結晶變長,主動層相分離程度降低,主動層的載子傳輸路徑變得更好,進一步改善主動層的微結構,所以元件的短路電流密度與填充因子能再一步提升,而非結晶的P3HT與IC60BA的交互作用變強,非結晶P3HT之有效共軛鏈長變短,使元件的開路電壓提升。其中主動層若加入較高沸點之添加劑DIO,產生的相分離程度降低,非結晶P3HT與IC60BA的交互作用較強,所以元件的開路電壓提升最多。
In this research, we discuss the influences of solvent additive and thermal annealing on the microstructures and electrical performance of organic solar cells (SCs). The poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) blend dissolved in chlorobenzene was adopted to fabricate the active layers of SCs. 1,5-Dichloropentane, 1,4-dibromobutane, and 1,8-diiodooctane were selected as solvent additives. After the addition of solvent additive or thermal annealing, the short circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE) of SCs were increased while the open circuit voltage (Voc) was decreased. Furthermore, joint solvent additive and thermal annealing were able to simultaneously increase the Jsc, Voc, FF, and PCE of SCs. Atomic force microscopy, X-ray diffraction, absorption, Raman, and photoluminescence spectroscopy were used to analyze the microstructures of P3HT:ICBA. Either solvent additive or thermal annealing improve the crystallinity of P3HT and cause obvious phase separation to form continuous charge transport pathways resulting in the increased Jsc, FF, and PCE of devices. However, the extended effective conjugation length (Leff) of amorphous P3HT and obvious phase separation weakened the interaction between P3HT and ICBA, leading to decreased Voc of devices. Compared with single method, combined solvent additive and thermal annealing could improve the crystallinity of P3HT and help the formation of more proper phase separation, and leading to the enhanced Jsc, FF, and PCE of devices. Moreover, the reduced Leff of amorphous P3HT and alleviated phase separation strengthened the interaction between P3HT and ICBA, resulting in increased Voc of devices.
[1] B. J. Peet, M. Senatore, A. J. Heeger and G. C. Bazan, “The role of processing in the fabrication and optimization of plastic solar cells,”
Adv. Mater., 21, 1521 (2009).
[2] S. S. Kim, S. I. Na, J. Jo, G. Tae and D. Y. Kim, “Efficient polymer solar cells fabricated by simple brush painting,” Adv. Mater. 19, 4410 (2007).
[3] D.J. Vak, S.S. Kim, J. Jo, S.H. Oh, S.I. Na, J.W. Kim and D.Y. Kim, “Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation” Appl. Phys. Lett.,91, 081102 (2007).
[4] R. Green, A. Morfa, A. J. Ferguson, N. Kopidakis, G. Rumbles and S. E. Shsheen, “Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition Shaheen,” Appl. Phys. Lett. 92, 033301 (2008).
[5] P. Schilinsky, C. Waldauf and C. J. Brabec, “Performance analysis of printed bulk heterojunction solar cells,” Adv. Funct.Mater. 16, 1669 (2006).
[6] D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller, R. Gaudiana and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2931 (2006).
[7] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92, 033306 (2008).
[8] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plastic solar cells, ” Adv. Funct. Mater. 11, 15 (2011).
[9] C. W. Tang, “2-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986).
[10] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photo-induced electron-transfer from a conducting polymer to Buckminster-fullerene,” Science, 258, 1474 (1992).
[11] J. C. Hummelen, et al. “Preparation and characterization of fulleroid and methanol fullerene derivatives,” J. Org. Chem. 60, 532 (1995).
[12] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Semiconducting polymers (as donors) and Buckminster fullerene (as acceptor) – photoinduced electron-transfer and heterojunction devices,” Synth. Met. 59, 333 (1993).
[13] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct.Mater.13, 85 (2003).
[14] G. Li, V. Shortriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nature Materials 4, 864 (2005).
[15] B. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,”Adv. Mater. 22, 135 (2010).
[16] Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[17] A.R.B.M. Yusoff, D. Kim, H.P. Kim, F.K. Shneider, W.J. da Silva, J. Jang, “ A high efficiency solution processed polymer inverted triple junction solar cell exhibiting a power conversion efficiency of 11.83%,” Energy Environ. Sci. (2015).
[18] Jiajun Wei, Qisheng Tu and Qingdong Zheng, “Heteroheptacene-cored semiconducting molecules for non-fullerene organic solar cells, ” Volume, 144, 133 (2017).
[19] G. Dennler, H.-J. Prall, R.Koeppe, M. Egginger, R. Autengruber and N.S. Sariciftci, “Enhanced spectral coverage in tandem organic solar cells,” Appl. Phys. Lett.,3 , 89, 073502 (2006).
[20]J.Y.Kim, K.Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Process,” Science, 13, 222 (2007).
[21] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency, Nat. Commun. 4 1446 (2013).
[22] M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. Yip, X. Peng, Y. Cao and Y. Chen, “Solution-processed organic tandem solar cells with power conversion efficiencies >12%,” Nature 11, 85-90 (2017).
[23] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428, 911 (2004).
[24] M. Pope and C. E. Swenberg, “Electronic processes in organic crystals and polymers 2nd edn.” Oxford univ., (1999).
[25] Dipl. Ing. Klaus Petritsch, “Organic solar cell architectures,” PhD Thesis, (2000).
[26] M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, “Design rules for donors in bulk heterojunction solar cells-towards 10% energy-conversion efficiency,” Adv. Mater. 18, 789 (2006).
[27] K. H and P. M, J. Phys. Chem., 30, 585 (1959).
[28] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, 270, 1789 (1995).
[29] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells,” J. Appl. Phys. 94, 6849 (2003).
[30] J. Peet, C. Soci, R. C. Coffin, T. Q. Nguyen, A. Mikhailovsky, D. Moses and G. C. Bazan, “Method for increasing the photoconductive response in conjugated polymer/fullerene composites,”Appl. Phys. Lett., 89, 252105 (2006).
[31] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana and Brabec, “ High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884 (2006).
[32] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and C. Bazan, “ Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6, 497 (2007).
[33] Y. Yao, J. Hou, Z. Xu, G. Li and Y. Yang, “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells,”Adv. Funct. Mater. 18, 1783 (2008).
[34] X. Liao, R. Lv, L. Chen and Y. Chen, “Synergistic effect of processing additives and thermal annealing in organic solar cells: the ‘‘Morphology of Magic,” Phys. Chem. 19, 10581 (2017).
[35] F. C. Wu, Y. C. Huang, H. L. Cheng, W. Y. Chou and F. C. Tang, “Importance of Disordered Polymer Segments to Microstructure Dependent Photovoltaic Properties of Polymer:Fullerene Bulk Heterojunction Solar Cells,”J. Phys. Chem. C,115,15057 (2011).
[36] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant and I. Baltog, “SERS spectra of of poly(3-hexyl)thiophene in oxidized and unoxidized states, ” J. Raman. Spectrosc. 29, 825 (1998).
[37] J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee and M. Moskovits, “Insight into the raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells, ” Appl. Phys. Lett. 92, 251912 (2008).
[38] A. Sakamoto, Y. Furukawa and M. Tasumi, “Infrared and Raman studies of poly(phenyl enevinylene) and its model compounds, ” J. Phys. Chem. 96, 1490 (1992).
[39] H. L. Cheng, J. W. Lin, F. C. Wu, W. R. She, W. Y. Chou, W. J. Shihb and H. S. Sheu, “Reformation of conjugated polymer chains toward maximum effective conjugation lengths by quasi-swelling and recrystallization approach, ” Soft Matter 7, 351 (2011).
[40] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells,” Adv. Funtc. Mater. 15, 1193 (2005).
校內:2022-12-31公開