簡易檢索 / 詳目顯示

研究生: 劉波
Liu, Bo
論文名稱: 以生成對抗網絡建構設計師輔助系統之研究
Application of Generative Adversarial Network for Designer-Assistance System
指導教授: 林彥呈
Lin, Yang-Cheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 114
中文關鍵詞: 深度學習感性工學生成對抗網絡形態生成汽車造型設計
外文關鍵詞: Deep Learning, Kansei Engineering, Generative Adversarial Networks, Shape Design, Automatic Design
相關次數: 點閱:151下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著社會的發展,伴隨產品設計方法與工業製造技術的不斷創新與消費者需求的不斷轉變,產品開發逐漸以生產導向轉為消費者導向。產品設計的趨勢已經由單純以機能考量的觀點轉變為融入產品語意,以期能創造出更符合消費者感性的產品。正因如此,在現今產品供大于求的時代,作為企業需要真正了解消費者的感性需求,才能勾起消費者內心深層次的購買欲望,從而使自身產品在消費者的眾多選擇中脫穎而出。對於設計師來說,在設計的早期階段能夠精準的了解消費者的感性需求特徵是至關重要的,這樣才能設計除出與目標消費者的產品形象期望更加接近的產品設計。
    為此,感性工學理論(Kansei Engineering)逐漸發展為最受廣泛使用的設計理論方法,它明確了產品的物理形式與感性認知之間的相關性的同時重視消費者情感上的需求,並將其轉化爲量化數據,映射為設計元素。感性工學雖然可以一定程度反應消費者的感受,但如何將感性資料加以運用從而使設計師在設計過程中更準確的設計出符合消費者感受的產品造型仍然是目前須探討研究的重要議題。
    因此,本研究提出一種具有系統化思維的造型影像生成系統,該方法藉由感性工學為基礎結合深度學習中的生成對抗網絡(Generative Adversarial Network)並以汽車側視造型作為說明性案例。首先本研究經過兩次問卷調查,應用因素分析、模糊C平均兩種分析技術定義了一千筆汽車側視資料與消費者感性之間的關係並進行量化排序處理。我們將消費者感性數據進行聚類,聚類結果顯示聚類數目為五類時最適合作為生成對抗網絡的訓練資料。經過對深度卷積對抗生成網絡大量的訓練與調整,本研究共生成了五類汽車側面造型圖像,實驗的結果展示了本研究想法的可行性,也證明經本研究生成的圖像能夠更有效率、準確地輔助設計師進行造型調整,從而設計出更符合消費者感受的產品。最後,雖然本研究僅以汽車側面造型作為案例說明,但此系統化的方法亦可被類推與應用至其他消費性產品的造形設計流程中。

    With the rapid development of society and the gradual improvement of human living standards, products need to meet the functional needs of consumers and emotional needs. With the continuous innovation of product design methods and industrial manufacturing technology and the continuous change of consumer demand, product development has gradually changed from production-oriented to consumer-oriented. The trend of product design has changed from a purely functional perspective to one that incorporates product semantics to create products that are more in line with consumer sensibilities. Therefore, when the supply of products exceeds the demand in today's era, companies need to truly understand consumers' emotional needs to evoke their deep-seated desire to buy, thus making their products stand out among the many consumers' choices. For designers, the most important thing is to accurately understand the perceptual needs of consumers in the early stages of design features. Only in this way can we design a product design closer to the expectations of the target consumer's product image.
    Therefore, Kansei Engineering (KE) has gradually developed into the most widely used design theory approach, clarifying the correlation between the physical form and perceptual cognition. KE focuses on consumers' emotional needs, translating them into quantitative data and mapping them into design elements. Although KE can reflect consumers' feelings to a certain extent, using perceptual data to more accurately design products that match consumers' feelings in the design process is still an important issue to be explored and studied.
    This study proposes a systematic thinking system for modeling image generation that combines Kansei Engineering and Generate Adversarial Networks (GAN). We use the side view of a Generation illustrative case. Firstly, we use the questionnaire to select the Kansei words that consumers think are suitable for describing cars. Then, use a semantic differential scale to quantify the consumers' perceptual cognition. Fuzzy C-Means (FCM) is used to cluster the quantitative data. The clustered data are used as a training set to build a GAN, which the GAN continuously trains to assist designers when they need to design products. In this study, the feasibility of this systematic design approach has been confirmed by experimentation and validation of the car side view. Although this is only an example here, the constructive concept of this systematic methodology can be applied by analogy to the design of other consumer products.

    致謝 i 摘要 ii Application of Generative Adversarial Network for Designer-Assistance System iii TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF SYMBOLS AND ABBREVIATIONS x CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.1.1 Consumer Demand 1 1.1.2 Development of Artificial Intelligence 2 1.2 Motivation 4 1.3 Purpose 6 1.4 Scope and Limitations 8 1.5 Structure 9 CHAPTER 2 Literature Review 11 2.1 Kansei Engineering 11 2.1.1 Definition of Kansei Engineering 11 2.1.2 Categories of Kansei Engineering 12 2.1.3 Kansei Engineering Applications and Artificial Neural Network 17 2.2 Automotive styling design study 19 2.3 Artificial intelligence 21 2.3.1 Neural Networks 22 2.3.2 Convolutional Neural Network 24 2.3.3 Generative Adversarial Network 29 2.3.4 Application of Generative Adversarial Network 33 2.4 Libraries and Frameworks 37 2.4.1 Python 37 2.4.2 TensorFlow 38 2.4.3 AutoKeras 39 CHAPTER 3 Research Methods 41 3.1 The First Stage Research 43 3.1.1 Sample Collection and Pre-processing 43 3.1.2 Kansei-word Collection and Extraction Experiment 44 3.2 The Second Stage Research 47 3.2.1 Definition of Relationship Between Sample and Kansei Words 47 3.2.2 Fuzzy C-means for Clustering 48 3.3 The Third Stage Research 49 3.3.1 Generative Adversarial Network Construction 49 3.3.2 Training of Generative Adversarial Network 50 CHAPTER 4 Research results and analysis 54 4.1 Kansei-word Collection and Extraction Experiment Result Analysis 54 4.2 Fuzzy C-Means Result 59 4.3 Training Results and Analysis of Generative Adversarial Network 65 CHAPTER 5 conclusion 70 5.1 Research Limitations 71 5.2 Future Study 72 REFERENCES 74 Appendix A Attend WorldS4 Conference Paper 82 Appendix B Kansei Words Extraction Experiment Questionnaire 90 Appendix C Instructions for Completing the Semantic Differential Scale 98 Appendix D Fuzzy C-Means Clustering Specific Results 99 Appendix E The Code of GAN Framework 112

    台灣工業技術研究院. (2020). 2020人工智慧趨勢分析!臺灣AI發展首推製造、醫療. 取自 https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=01_content&SiteID=1&MmmID=1036276263153520257&MGID=1072621752516105272
    王建堯,王家慶,吳信輝等. (2019). 人工智慧導論: 全華圖書股份有限公司.
    張華城, & 張育銘. (2000). 以自組織映射網絡建構造型認知模擬系統可行性研究. 工業設計 28(2), 136-141.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
    Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: the simple economics of artificial intelligence: Harvard Business Press. Brighton: Harvard Business Review Press.
    Al-Hindawe, J. (1996). Considerations when constructing a semantic differential scale. La Trobe papers in linguistics, 9(7), 1-9.
    Aoussat, A., Christofol, H., & Le Coq, M. (2000). The new product design‐a transverse approach. Journal of Engineering Design, 11(4), 399-417. doi:https://doi.org/10.1080/09544820010000971
    Bloch, P. H. (1995). Seeking the ideal form: Product design and consumer response. Journal of marketing, 59(3), 16-29. doi:https://doi.org/10.2307/1252116
    Catalano, C. E., Falcidieno, B., Giannini, F., & Monti, M. (2002). A survey of computer-aided modeling tools for aesthetic design. J. Comput. Inf. Sci. Eng., 2(1), 11-20. doi:https://doi.org/10.1115/1.1481371
    Cao, Y. J., Jia, L. L., Chen, Y. X., Lin, N., Yang, C., Zhang, B., Li, X. X., & Dai, H. H. (2018). Recent advances of generative adversarial networks in computer vision. IEEE Access, 7, 14985-15006. doi:10.1109/ACCESS.2018.2886814
    Chen, J. H., & Asch, S. M. (2017). Machine learning and prediction in medicine—beyond the peak of inflated expectations. The New England journal of medicine, 376(26), 2507. doi:10.1056/NEJMp1702071
    Chen, H. Y., & Chang, Y. M. (2004). A study on the feature relationship of automobile contour. Journal of Design, 9(2), 86-105.
    doi:https://doi.org/10.6381/JD.200406.0087
    Vincent, C. H. E. U. T. E. T. (2007). 2D semantic sketcher for car aesthetic design. In Fifth International Conference of Inte2 grated Design and Production, 1213.
    CireşAn, D., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign classification. Neural networks, 32, 333-338. doi:https://doi.org/10.1016/j.neunet.2012.02.023
    Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1), 53-65. doi:10.1109/MSP.2017.2765202
    Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3, 32-57. doi:https://doi.org/10.1080/01969727308546046
    Elsheikh, A. H., Sharshir, S. W., Abd Elaziz, M., Kabeel, A., Guilan, W., & Haiou, Z. (2019). Modeling of solar energy systems using artificial neural network: A comprehensive review. Solar Energy, 180, 622-639. doi:https://doi.org/10.1016/j.solener.2019.01.037
    Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search: A survey. The Journal of Machine Learning Research, 20(1), 1997-2017. doi:https://doi.org/10.1007/978-3-030-05318-5_11
    Feng, S., Zhou, H., & Dong, H. (2019). Using deep neural network with small dataset to predict material defects. Materials & Design, 162, 300-310. doi:https://doi.org/10.1016/j.matdes.2018.11.060
    Fukushima, K., Kawata, H., Fujiwara, Y., & Genno, H. (1995). Human sensory perception oriented image processing in a color copy system. International Journal of Industrial Ergonomics, 15(1), 63-74. doi:https://doi.org/10.1016/0169-8141(94)00057-A
    Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2414-2423. doi:10.1109/CVPR.2016.265
    Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.
    Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. Cambridge: MIT Press.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2014). Generative adversarial nets. Paper presented at the Advances in neural information processing systems, 2, 2672-2680. Retrieved from https://dl.acm.org/doi/10.5555/2969033.2969125
    Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., . . . Cai, J. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. doi:https://doi.org/10.1016/j.patcog.2017.10.013
    Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory: J. Wiley; Chapman & Hall.
    Heidari, E., Sobati, M. A., & Movahedirad, S. (2016). Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemometrics and Intelligent Laboratory Systems, 155, 73-85. doi:10.1016/j.chemolab.2016.03.031
    Jin, H., Song, Q., & Hu, X. (2019). Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1946-1956. doi:https://doi.org/10.1145/3292500.3330648
    Kelly, J., Papalambros, P. Y., & Seifert, C. M. (2008). Interactive Genetic Algorithms for Use as Creativity Enhancement Tools. In AAAI spring symposium: creative intelligent systems, 34-39.
    Kreuzbauer, R., & Malter, A. J. (2005). Embodied cognition and new product design: Changing product form to influence brand categorization. Journal of Product Innovation Management, 22(2), 165-176. doi:10.1111/j.0737-6782.2005.00112.x
    Krippendorff, K. (1989). On the essential contexts of artifacts or on the proposition that" design is making sense (of things)". Design issues, 5(2), 9-39. doi:https://doi.org/10.2307/1511512
    Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332-1338. doi:10.1126/science.aab3050
    LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551. doi:10.1162/neco.1989.1.4.541
    LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791
    Li, F., & Du, Y. (2018). From AlphaGo to power system AI: What engineers can learn from solving the most complex board game. IEEE Power and Energy Magazine, 16(2), 76-84. doi:10.1109/MPE.2017.2779554
    Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., & Jurafsky, D. (2017). Adversarial learning for neural dialogue generation. arXiv preprint arXiv:1701.06547.
    Liem, A., Abidin, S., & Warell, A. (2009). Designers’ perceptions of typical characteristics of form treatment in automobile styling. Paper presented at the 5th International Workshop on Design & Semantics of Form and Movement, DesForm.
    Lovelace, A. A. (1842). Sketch of the analytical engine invented by Charles Babbage, by LF Menabrea, officer of the military engineers, with notes upon the memoir by the translator. Taylor’s Scientific Memoirs, 3, 666-731. Retrieved from https://www.fourmilab.ch/babbage/sketch.html
    Matsubara, Y., & Nagamachi, M. (1997). Hybrid Kansei engineering system and design support. International Journal of Industrial Ergonomics, 19(2), 81-92. doi:https://doi.org/10.1016/S0169-8141(96)00005-4
    McDonagh, D., Bruseberg, A., & Haslam, C. (2002). Visual product evaluation: exploring users’ emotional relationships with products. Applied Ergonomics, 33(3), 231-240. doi:https://doi.org/10.1016/S0003-6870(02)00008-X
    Mellit, A., & Pavan, A. M. (2010). A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy, 84(5), 807-821. doi:10.1016/j.solener.2010.02.006
    Mi, F., Huang, M., Zhang, J., & Faltings, B. (2019). Meta-learning for low-resource natural language generation in task-oriented dialogue systems. arXiv preprint arXiv:1905.05644.
    Millman, K. J., & Aivazis, M. (2011). Python for scientists and engineers. Computing in Science & Engineering, 13(2), 9-12.
    Moor, J. (2006). The Dartmouth College artificial intelligence conference: The next fifty years. Ai Magazine, 27(4), 87-87. doi:https://doi.org/10.1609/aimag.v27i4.1911
    Nagamachi, M. (1995). KANSEI ENGINEERING - A NEW ERGONOMIC CONSUMER-ORIENTED TECHNOLOGY FOR PRODUCT DEVELOPMENT. International Journal of Industrial Ergonomics, 15(1), 3-11. doi:10.1016/0169-8141(94)00052-5
    Nagamachi, M. (2002). Kansei engineering as a powerful consumer-oriented technology for product development. Applied Ergonomics, 33(3), 289-294. doi:10.1016/s0003-6870(02)00019-4
    Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. New York: Basic Books.
    Oliphant, T. E. (2007). Python for scientific computing. Computing in Science & Engineering, 9(3), 10-20.
    Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Univer. In: Illinois press Oxford, UK: Univ of Illinois Pr
    Pan, S.-T., & Lai, C.-C. (2008). Identification of chaotic systems by neural network with hybrid learning algorithm. Chaos, Solitons & Fractals, 37(1), 233-244. doi:https://doi.org/10.1016/j.chaos.2006.08.037
    Paoletti, M., Haut, J., Plaza, J., & Plaza, A. (2018). A new deep convolutional neural network for fast hyperspectral image classification. ISPRS journal of photogrammetry and remote sensing, 145, 120-147. doi:https://doi.org/10.1016/j.isprsjprs.2017.11.021
    Pascual, S., Bonafonte, A., & Serra, J. (2017). SEGAN: Speech enhancement generative adversarial network. arXiv preprint arXiv:1703.09452.
    Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621.
    Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
    Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (2001). Neural network design for engineering applications. Computers & Structures, 79(17), 1541-1552. doi:10.1016/s0045-7949(01)00039-6
    Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Retrieved from
    Rossum, G. (1995). Python reference manual.
    Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60. doi:https://doi.org/10.1186/s40537-019-0197-0
    Singh, D., Kumar, V., Vaishali, & Kaur, M. (2020). Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. European Journal of Clinical Microbiology & Infectious Diseases, 39(7), 1379-1389. doi:10.1007/s10096-020-03901-z
    Sondak, N. E., & Sondak, V. K. (1989). Neural networks and artificial intelligence. In Proceedings of the twentieth SIGCSE technical symposium on Computer science education, 241-245.
    Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016). Breast cancer histopathological image classification using convolutional neural networks. In 2016 international joint conference on neural networks (IJCNN), 2560-2567. doi:10.1109/IJCNN.2016.7727519
    Turing, A. M. (1950). Computing Machinery and Intelligence. Retrieved from https://en.wikipedia.org/wiki/Computing_Machinery_and_Intelligence
    Vieira, J., Osório, J. M. A., Mouta, S., Delgado, P., Portinha, A., Meireles, J. F., & Santos, J. A. (2017). Kansei engineering as a tool for the design of in-vehicle rubber keypads. Applied Ergonomics, 61, 1-11. doi:https://doi.org/10.1016/j.apergo.2016.12.019
    Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F.-Y. (2017). Generative adversarial networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588-598. doi:10.1109/JAS.2017.7510583
    Wang, K.-C. (2011). A hybrid Kansei engineering design expert system based on grey system theory and support vector regression. Expert Systems with Applications, 38(7), 8738-8750. doi:https://doi.org/10.1016/j.eswa.2011.01.083
    Wang, K.-C., Nagai, M., & Kun-Li, W. A Product Form Design Expert System Using Integral Schemes of Artificial Intelligence and Hybrid Kansei Engineering.
    Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2020). Generalizing from a few examples: A survey on few-shot learning. ACM Computing Surveys (CSUR), 53(3), 1-34. doi:https://doi.org/10.1145/3386252
    Warell, A., Fjellner, C., & Stridsman-Dahlström, J. (2006). Visual product identity: Understanding identity perceptions conveyed by visual product design. In 5th International conference on design & emotion. Chalmers University of Technology.
    Wei, J. (2018). Research Progress and Application of Computer Artificial Intelligence Technology. Paper presented at the MATEC Web of Conferences. doi: https://doi.org/10.1051/matecconf/201817601043
    Wilson, J. R. (1999). Virtual environments applications and applied ergonomics. Applied Ergonomics, 30(1), 3-9.
    Yamamoto, K. (1986.). Kansei Engineering- The Art of Auto- motive Development at Mazda. Special Lecture at The University of Michigan.
    Yong, Y., Chongxun, Z., & Pan, L. (2004). A novel fuzzy c-means clustering algorithm for image thresholding. Measurement Science Review, 4(1), 11-19.
    Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017). Sequan: Sequence generative adversarial nets with policy gradient. Paper presented at the Thirty-first AAAI conference on artificial intelligence.
    Yu, Q., Yang, Y., Song, Y.-Z., Xiang, T., & Hospedales, T. (2015). Sketch-a-net that beats humans. arXiv preprint arXiv:1501.07873.
    Zhang, Y., Gan, Z., & Carin, L. (2016). Generating text via adversarial training. Paper presented at the NIPS workshop on Adversarial Training.
    Zhou, L. (2019). Paper Dreams: an adaptive drawing canvas supported by machine learning. Massachusetts Institute of Technology.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE