研究生: |
黃一剛 Huang, Yi-Gung |
---|---|
論文名稱: |
流體介質與奈米碳管交互作用之研究 Investigation on Interaction Between Fluidic monomers and Carbon Nanotube |
指導教授: |
黃吉川
Hwang, Chi-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 楊氏模數 、奈米碳管 、分子動力學 、流體介質 |
外文關鍵詞: | Fluidic monomer, Molecular dynamics, Carbon nanotube, Young’s modulus |
相關次數: | 點閱:96 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以分子動力學方法模擬流體介質與奈米碳管之交互作用。文中將奈米碳管與管內流體介質填充物整體視為均質懸臂樑系統,運用統計力學方法,透過奈米碳管自由振動時於自由端位移的標準差計算出該系統之楊氏模數,依此探討流體介質與溫度變化對系統機械性質之影響。研究中發現,含有填充物之奈米碳管其楊氏模數大於空心奈米碳管。在碳管的鍵長和鍵角之結構特徵分析上,發現鍵角在不同溫度作用下變化不大,然而當填充率達到100%以上時,鍵長將明顯增加,使奈米碳管呈現均勻膨脹現象。
This paper presents a study on the interactions between fluidic monomers and carbon nanotube by using molecular dynamics simulation. Herein the structure of the carbon nanotube associated with the stuffing fluidic monomers is regarded as a homogeneous cantilever beam system. The displacement standard deviation at the free end of the free-vibrating nanotube is used to estimate the mechanical property of the system by using statistical mechanics and the effects of the fluidic monomers and temperature variation are discussed in the study. It was found that the filled carbon nanotubes have higher Young’s modulus than the unfilled ones. Furthermore, the bond angle of carbon nanotubes varies slightly in different temperatures, but it increases significantly as the filling rate of the fluidic monomers in the nanotube reaches 100%, which results in a uniform volume expansion of the carbon nanotube.
[1] http://www.tainano.com/chin/Eigler.htm
[2] Y. Achiba, P. W. Fowler, D. Mitchell, and F. Zerbetto, Structural predictions for the C-116 molecule, Journal of Physical Chemistry A, 102, 34, 6835-6841, 1998.
[3] S. Iijima, Helical Microtubeles of Graphitic carbon, Nature, 354, 56-58, 1991.
[4] M. C. Bohm, J. Schulte and R. Schlogl, An ab initio study of the C-60 particle-hole pair C-60(12+) and C-60(12-), ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 52, 331-334, 1991.
[5] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, C60:Buckminster, Nature, 318, 162-163, 1985.
[7] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber﹐Structure and electronic properties of carbon nanotubes, Journal of Physical Chemistry B, 104, 2794-2809, 2000.
[8] S. Amelinckx, A. Lucas, and P. Lambin, Electron diffraction and microscopy of nanotubes ﹐Reports on Progress in Physics, 62, 1471-1524, 1999.
[9] D. Golberg, Y. Bando, C. C. Tang, and C. Y. Zhi, Boron nitride nanotubes, Advanced Materials, 19, 2413-2432, 2007.
[10] S. Iijima, and T. Ichihashi, Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature﹐356, 776-778, 1992.
[11] H. Dai, E. W. Wong, and C. M. Lieber, Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes , Science, 272, 523, 1996.
[12] Chuan Chen, Chia-Chang Tsai, Jian-Ming Lu, and Chi-Chuan Hwang, Electronic Properties of Capped, Finite-Length Armchair Carbon Nanotubes in an Electric Field, The Journal of Physical Chemistry B, 110, 12384-12387, 2006.
[13] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, M. F. Lin, Low-energy electronic properties of the AB-stacked few-layer graphites, Journal of Physics: Condensed Matter, 18(26), 5849-5859, 2006.
[14] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T.
Thio, Electrical conductivity of individual carbon nanotubes, Nature, 382, 54, 1996.
[15] 成會明,奈米碳管,五南圖書出版社,2004。
[16] R. Satio, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, Singapore, 1998.
[17] H. Yokomichi, M. Matoba, H. Sakima, M. Ichihara, and F. Sakai, Synthesis of carbon nanotubes by arc discharge in CF4 gas atmosphere, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 37, 6492-6496, 1998.
[18] P. M. Ajayan, P. Redlich, and M. Ruhle, Balance of graphite deposition and multishell carbon nanotube growth in the carbon arc discharge, Journal of Materials Research, 12, 244-252, 1997.
[19] Z. J. Shi, Y. F. Lian, F. H. Liao, X. H. Zhou, Z. N. Gu, Y. Zhang, S. Iijima, H. D. Li, K. T. Yue, and S. L. Zhang, Large scale synthesis of single-wall carbon nanotubes by arc-discharge method, Journal of Physics and Chemistry of Solids, 61, 1031-1036, 2000.
[20] Z. Osvath, A. A. Koos, Z. E. Horvath, J. Gyulai, A. M. Benito, M. T. Martinez, W. Maser, and L. P. Biro, STM observation of asymmetrical Y-branched carbon nanotubes and nano-knees produced by the arc discharge method, Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 23, 561-564, 2003.
[21] H. W. Zhu, B. Jiang, C. L. Xu, and D. H. Wu, Synthesis of high quality single-walled carbon nanotube silks by the arc discharge technique, Journal of Physical Chemistry B, 107, 6514-6518, 2003.
[22] R. Bohme, K. Zimmer, and B. Rauschenbach, Laser backside etching of fused silica due to carbon layer ablation, Applied Physics A: Materials Science & Processing, 82, 325-328, 2006.
[23] T. Noguchi, K. Suizu, and K. Nagayama, Laser ablation of a thin carbon layer deposited on a polymer substrate by Nd : YAG laser, Applied Surface Science, 197, 357-361, 2002.
[24] Y. Sakakibara, S. Tatsuura, H. Kataura, M. Tokumoto, and Y. Achiba, Near- infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method, Japanese Journal of Applied Physics, 42, 494-496, 2003.
[25] K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima, Boron-catalyzed multi-walled carbon nanotube growth with the reduced number of layers by laserablation, Chemical Physics Letters, 324, 224-230, 2000.
[26] K. Morishita, and T. Takarada, Scanning electron microscope observation of the purification behaviour of carbon nanotubes, Journal of Materials Science, 34, 1169-1174, 1999.
[27] 黃建盛,奈米碳管簡介,科學新天地。
[28] 許明發、郭文雄編著,奈米碳管科技, 新竹黎明書店經銷,2004。
[29] M. Yudasaka, R. Kikuchi, Y. Ohki, and S. Yoshimura, Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition, Carbon, 35, 195-201, 1997.
[30] C. L. Cheung, J. H. Hafner, and C. M. Lieber, Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proceedings of the National Academy of Sciences, 97, 3809-3813, 2000.
[31] H. Araki, H. Kajii, and K. Yoshino, Effects of substrate materials on growth of carbon nanotubes by chemical vapor deposition using metal-phthalocyanines, Japanese Journal of Applied Physics, 2, 1351-1353, 1999.
[32] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, Model of carbon nanotube growth through chemical vapor deposition, Chemical Physics Letters, 315, 25-30, 1999.
[33] J. H. Han, B. S. Moon, W. S. Yang, J. B. Yoo, and C. Y. Park, Growth characteristics of carbon nanotubes by plasma enhanced hot filament chemical vapor deposition, Surface and Coatings Technology, 131, 93-97, 2000.
[34] T. Ikuno, S. Takahashi, K. Kamada, S. Ohkura, S. I. Honda, M. Katayama, T. Hirao, and K. Oura, Influence of the plasma condition on the morphology of vertically aligned carbon nanotube films grown by RF plasma chemical vapor deposition, Surface Review and Letters, 10, 611-615, 2003.
[35] M. J. Yacaman, M. M. Yoshida, L. Rendon and J. G. Saniesteban, Catalytic growth of carbon microtubules with fullerene structure, Applied Physics Letters, 62, 202, 1993.
[36] 周長彬、吳文發,奈米碳管合成與機械性質研究,交通大學機械所,2005。
[37] C. Journet, and P. Bernier, Production of carbon nanotubes﹐Applied Physics A: Materials Science & Processing, 67, 1-9, 1998.
[38] 李國禎,奈米科技之重要成果與研究重點 。
[39] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition﹐Applied Physics Letters, 72, 3437-3439, 1998.
[40] Masaki Matsushima, Hisashi Araki, Koichi Kamide, Takao Sakata, Hirotaroh Mori and Katsumi Yoshino, Field emission from bamboo-like multiwalled carbon nanotube arrays enhanced by mild oxidation, Japanese Journal of Applied Physics, 2 , 1036-1038, 2003.
[41] J. C. She, N. S. Xu, S. Z. Deng, J. Chen, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong, and E. G. Wang, Vacuum breakdown of carbon-nanotube field emitters on a silicon tip, Applied Physics Letters, 83, 2671-2673, 2003.
[42] K. Yu, Z. Zhu, Q. Li, and W. Lu, Electronic properties and field emission of carbon nanotube films treated by hydrogen plasma, Applied Physics A: Materials Science & Processing, 77, 811-817, 2003.
[43] U. Kim, and D. M. Aslam, Field emission electroluminescence on diamond and carbon nanotube films, J Vac Sci Technol B, 21, 1291-1296, 2003.
[44] J. H. Huang, C. C. Chuang, C. H. Tsai, and W. J. Chen, Excellent field emission from carbon nanotubes grown by microwave-heated chemical vapor deposition, J VAC SCI TECHNOL B, 21, 1655-1659, 2003.
[45] C. H. P. Poa, R. C. Smith, S. R. P. Silva, P. C. P. Watts, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Field emission from nonaligned carbon nanotube-polymer matrix cathodes, J VAC SCI TECHNOL B, 21, 1715-1719, 2003.
[46] Z. G. Zhao, Y. Tong, C. Liu, and H. M. Cheng, Effect of geometrical parameters on the field-emission properties of single-walled carbon nanotube ropes, Journal of Materials Research, 18, 2188-2193, 2003.
[47] TECO Nanotech Co.Ltd.-CNT-FED Technology.
[48] C. H. Lee, K. T. Kang, K. S. Park, M. S. Kim, H. S. Kim, and H. G. Kim, Fischer, J. E. and Johnson, A. T., The nano-memory devices of a single wall and peapod structural carbon nanotube field effect transistor, Japanese Journal of Applied Physics, 42, 5392-5394, 2003.
[49] Anon, Institute seeks to speed carbon nanotube transistor use with first test-method standard, Micro, 21, 26, 2003.
[50] K. Matsumoto, S. Kinoshita, Y. Gotoh, K. Kurachi, T. Kamimura, M. Maeda, K. Sakamoto, M. Kuwahara, N. Atoda, and Y. Awano, Single-electron transistor with ultra-high Coulomb energy of 5000K using position controlled grown carbon nanotube as channel, Japanese Journal of Applied Physics, 42, 2415-2418, 2003.
[51] F. Nihey, H. Hongo, M. Yudasaka, and S. Iijima, A top-gate carbon-nanotube field-effect transistor with a titanium-dioxide insulator, Japanese Journal of Applied Physics, 41, 1049-1051, 2002.
[52] A. A. Eliseev, Carbon-nanotube transistor arrays used for fabrication of multistage complementary logic devices and ring oscillators, Mrs Bulletin, 27, 737-738, 2002.
[53] A. Javey, Q. Wang, A. Ural, Y. M. Li, and H. J. Dai, Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators, Nano Letters, 2, 929-932, 2002.
[54] C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygard, and J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads, Applied Physics Letters, 79, 2106-2108, 2001.
[55] 王子銘,奈米碳管發展簡介及未來展望,拓樸產業研究所,2003 。
[56] S. Chopra, K. McGuire, N. Gothard, A. M. Rao, and A. Pham, Selective gas detection using a carbon nanotube sensor, Applied Physics Letters, 83, 2280-2282, 2003.
[57] J. Li, Y. J. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection, Nano Letters, 3, 929-933, 2003.
[58] M. Wienecke, M. C. Bunescu, M. Pietrzak, K. Deistung, and P. Fedtke, PTFE membrane electrodes with increased sensitivity for gas sensor applications, Synthetic Metals, 138, 165-171, 2003.
[59] S. Peng, and K. J. Cho, Ab initio study of doped carbon nanotube sensors, Nano Letters, 3, 513-517, 2003.
[60] D. J. Hash, and M. Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley & Sons, INC. 1997.
[61] K. A. Williams, and P. C. Eklund, Monte Carlo Simulations of H_2 Physisorption in Finite-Diameter Carbon Nanotube Ropes. Chemical Physics Letters, 320, 3, 352-358, 2000.
[62] K. Kaneko, R. F. Cracknell, and D. Nicholson, Nitrogen Adsorption in Slit Pores at Ambient Temperatures: Comparison of Simulation and Experiment, Langmuir, 10, 4606-4609, 1994.
[63] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science, 286, 1127-1129, 1999.
[64] Shigeo Maruyama and Tatsuto Kimura, Molecular Dynamics Simulation of Hydrogen Storage in Single-Walled Carbon Nanotubes, American Society of Mechanical Engineers, 11, 5-11, 2000.
[65] http://www.bast.net.cn/
[66] J. P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Physical Review Letter, 79, 1297-1300, 1997.
[67]. Jin-Yuan Hsieh, Jian-Ming Lu, Min-Yi Huang, and Chi-Chuan Hwang, Theoretical variations in the Young's modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study, Nanotechnology, 17, 3920-3924, 2006.
[68] D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejon, Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Physical Review B, 59, 12678-12688, 1999.
[69] T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi, M. Tang, and S. Y. Wu, Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature, 405, 769-772, 2000.
[70] O. Lourie, H. D. Wagner, Effect of thermomechanical stress on the Raman spectrum of embedded carbon nanotubes, Journal of Materials Research, 13, 2418-2422,1998.
[71] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes, Applied Physics Letters, 74, 3803-3805, 1999.
[72] B. Babic, J. Furer, S. Sahoo, Sh. Farhangfar, and C. Schonenberger, Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes, Nano Letters, 3, 1577-1580, 2003.
[73] B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, and R. O. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing, 334, 173-178, 2002.
[74] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit and L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics A: Materials Science & Processing, 69, 255-260, 1999.
[75] E. Wong, P. Sheehan and C. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science, 277, 1971-1975, 1997.
[76] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. DeHeer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283, 1513-1516, 1999.
[77] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637-640, 2000.
[78] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Young's modulus of single-walled nanotubes, Physical Review B, 58, 14013-14019, 1998.
[79] C. F. Cornwell, and L. T. Wille, Elastic properties of single-walled carbon nanotubes in compression, Solid State Communications, 101, 555-558, 1997.
[80] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, Journal of the American Chemical Society, 118, 2309-2309, 1996.
[81] E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Elastic properties of single-wall nanotubes, Applied Physics A: Materials Science & Processing, 68, 287-292, 1999.
[82] J. M. Lu, C. C. Hwang, Q. Y. Kuo, and Y. C. Wang, Mechanical buckling of multi-walled carbon nanotubes: The effects of slenderness ratio, physica e-low-dimensional systems & nanostructures, 40, 1305-1308, 2008.
[83] Van Lier G, Van Alsenoy C, Van Doren V and Geerlings P, Ab initio study of the elastic properties of single-walled carbon nanotubes and grapheme, Chemical Physics Letters, 326, 181-185, 2000.
[84] G. Hummer, J. C. Rasaiah, J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414, 6860, 188-190, 2001.
[85] H. Q. Yu, H. Li, J. X. Zhang, X. F. Liu, and K. M. Liew, Possibility of driving water molecules along a single-walled carbon nanotube using methane molecules, Carbon, 48, 417-423, 2010.
[86] Lu Hang-Jun, Gong Xiao-Jing, Wang Chun-Lei, Fang Hai-Ping and Wang Rong-Zheng, Effect of vibration on water transport through carbon nanotubes, Chinese Physics Letters, 25, 1145-1148, 2008.
[87] Ben Corry, Designing carbon nanotube membranes for efficient water desalination, Journal of Physical Chemistry, 1427-1434, 2008.
[88] Z. Wang, L. Ci, L. Chen, S. Nayak, P. M. Ajayan, and N. Koratkar, Polarity-Dependent Electrochemically Controlled Transport of Water through
Carbon Nanotube Membranes. Nano Letters, 7, 697-702, 2007.
[89]Shin-Pon Ju, Meng-Hsiung Weng, Jenn-Sen Lin, Jian-Ming Lu, Jee-Gong Chag and Wen-Hsien Wu, Mechanical Behavior of Single-Walled Carbon Nanotubes in Water under Tensile Loadings: A Molecular Dynamics Study, Chinese Journal of Catalysis, 29, 1113-1116, 2008.
[90] L. G. Zhou and S. Q. Shi, Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage, Computational Materials Science, 23, 166-174, 2002.
[91] M. Bystrzejewski, R. Schoenfelder, G. Cuniberti, H. Lange, A. Huczko, T. Gemming, T. Pichler, B. Buechner, and M. Ruemmeli, Exposing Multiple Roles of H_2 O in High-Temperature Enhanced Carbon Nanotube Synthesis, Chemistry of Materials, 20, 6586-6588, 2008.
[92] X. L. Zhao, T. Okazaki, A. Kasuya, H. Shimoyama, and Y. Ando, Optical emission spectra during carbon nanotube production by arc discharge in H_2, CH_4 or He gas, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 38, 6014-6016, 1999.
[93] D. Mattia, and Y. Gogotsi, Review: static and dynamic behavior of liquids inside carbon nanotubes, Microfluidics and Nanofluidics, 5, 289-305, 2008.
[94] B. W. Smith, M. Monthioux and D. E. Luzzi, Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials, Chemical Physics Letters, 315, 31-36, 1999.
[95] M. Byong, S. Qian, and H. H. Bau, Filling carbon nanotubes with particles, Nano Letters, 5, 873-878, 2005.
[96] Fujitsu Limited, User’s Manual of Materials Explorer for Windos, 2002.
[97] F. Cleri and V. Rosato, Tight-binding potentials for transition metals and alloys, Physical Review B, 48, 22-33, 1993.
[98] D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, 42, 9458-9471, 1990.
[99] J. Tersoff, New empirical approach for the structure and energy of covalent systems, Physical Review B, 37, 6991, 1988.
[100] J. M. Haile, Molecular Dynamics Simulations, John Wiley Sons, New York, 1992.
[101] D. C. Rapaport, The Art of Molecular Dynamics Simulation - Cambridge University Press, London, 1997.
[102] D. Frenkel, and B. smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996.
[103] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physical, 81, 511,1984.
[104] W. Hoover, Canonical dynamics:equilibrium phase-space distributions, Physical Review A, 31, 1695, 1985.
[105] 黃春松、林慧姿、廖苹邁 、張嘉容編著,統計學, 新科技,2005。
[106] 盧建銘,奈米碳管的挫曲與含水之熱機行為,成功大學工科所,2008。
[107] 黃閔義,以分子動力學方法模擬在溫度與尺寸變異下的單壁奈米碳管楊氏模數之研究,成功大學工科所,2006。