簡易檢索 / 詳目顯示

研究生: 周芳瑜
Chou, Fang-yu
論文名稱: 奈米球微影術製成奈米金屬結構之研究與應用
Fabrication of Metallic Nanostructure using nanosphere Lithography
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 80
中文關鍵詞: 表面電漿奈米球自組織微影術
外文關鍵詞: Nanosphere lithography, surface plasmon
相關次數: 點閱:250下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米金屬結構的研究與製程是目前科技發展的熱門的課題之ㄧ。本論文中,我們將依據奈米球自組織微影術 (Nanosphere lithography; NSL)的原理,來製作金屬奈米結構。首先利用分子自組裝(self-assembly)的特性,製作出0.5µm、0.7µm、1.0µm、1.6µm及2.0µm的單層奈米球陣列。奈米球自組織微影術的最佳實驗參數也在本文中有系統性的研究。受限於現有實驗設備,最大均勻的單層奈米球排列面積可達為30mm x15 mm。另外,也可在線寬為60μm的特殊圖案溝槽內排列均勻單層的奈米球陣列。實驗結果也發現可藉由離子蝕刻將其尺寸縮小。利用吸收光譜來分析利用單層排列的奈米球陣列作為遮罩所製作出具有週期性排列、形狀近似三角形的Ag奈米陣列的薄膜可發現其具有區域表面電漿共振。其共振波長會隨金屬粒子粒徑降低而藍移,且會因粒子形狀不同而產生偏移。因此利用這個區域表面電漿共振的特性,我們將Ag奈米陣列成長在薄膜有機太陽能電池之表面可以得到比具有金屬Ti的奈米結構的元件有較高的光轉換效率。金屬Ag的奈米結構的表面電漿子散射應是較高的薄膜有機太陽能電池的轉換效率的可能因素之一。

    Fabrications of metallic nanostructures are becoming increasingly important in a variety of scientific applications. In this dissertation, metallic nanoparticle arrays are fabricated using nanosphere lithography. A single layer of nanosphere arrays consisted of nanospheres with diameters of 0.5µm, 0.7µm, 1.0µm, 1.6µm, 2.0µm is utilized as the shadow mask for the metallic nanoparticles arrays. The optimized experimental conditions for the formation of nanosphere arrays are systematically studied. The maximum area of this single layer nsnosphere array can be obtained is approximately 30mm x15 mm limited by the current experimental instruments. It is also able to form a single layer of nanosphere arrays within a pre-patterned 60 m-wide trench. O2 plasma etching is also able to reduce the size of polystyrene nanospheres. The absorption spectra from Ag nanostructures fabricated with nanopshere lithography exhibit responses from localized surface plasmon resonant scattering (SPRS) from the Ag nanostructures. The observed localized surface plasmon resonance blue-shifted as the size of metallic nanoparticle decreased. The resonance also blue shifted as the shape of metallic nanoparticle changed from a triangular form to a circular form. The application of Ag nanostructures in organic solar cell is also investigated. The power conversion efficiencies of the solar cell with Ag nanoparticles (2.42%) are higher than the device with Ti nanoparticles (1.68%). Effect from the surface plasmon resonance scattering is a possible cause for this enhanced power conversion efficiency.

    目錄 中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 簡介 1 1-1奈米科技 1 1-2奈米材料結構的基本原理及特性 2 1-2.1奈米材料介紹 2 1-2.2奈米微粒的基本原理 3 1-2.3奈米材料的特殊性質 5 1-3常見的奈米結構製程技術 6 1-4奈米球自組織微影術原理 9 1-4.1奈米球自組織陣列形成機制 9 1-4.2奈米球微影術(Nanosphere Lithography;NSL) 10 1-5區域表面電漿子 13 1.5-1金屬的表面電漿子共振 13 1-5.2金屬的區域表面電漿子共振 15 第二章 實驗儀器及實驗架設 19 2-1藥品及實驗設備 19 2-1.1奈米球溶液 19 2-1.2 Convective self-assembly實驗方式及實驗架構 19 2-1.3 Capping Method 實驗方式及實驗架構 22 2-2量測及實驗儀器 23 2-2.1真空熱蒸鍍系統 23 2-2.2反應式離子蝕刻機(Reactive Ion Etching; RIE) 23 2-2.3紫外線/可見光分光光譜儀(UV/VIS spectrometers) 23 2-2.4 原子力顯微鏡(Atomic Force Microscope; AFM) 24 2-2.5掃描式電子顯微鏡(Scanning Electron Microscope; SEM) 25 第三章 奈米結構之製成與光學特性分析 27 3-1奈米球陣列製作與分析 27 3-1.1基板準備 27 3-1.2奈米球溶液製備 30 3-1.3 環境參數對奈米球排列的影響 37 3-2奈米球陣列製作結果討論 42 3-2.1不同尺寸奈米球陣列製作 42 3-2.2不同基板的奈米球陣列製作 44 3-2.3 大面積排列 45 3-3 結論 47 第四章 奈米結構之特性分析與應用 48 4-1奈米金屬薄膜之光學特性分析 48 4-1.1奈米金屬薄膜製成 48 4-1.2不同遮罩尺寸之金屬薄膜穿透率量測 53 4-1.3不同形狀之金屬薄膜穿透率量測 56 4-2利用CSA製成光子晶體結構 58 4-2.1特殊圖案奈米球陣列製作 59 4-2.2 O2 Plasma Etching 63 4-3 特殊金屬圖案製成 65 4-4應用於有機薄膜太陽能電池元件 68 4-5 結論 74 第五章 結論 76 參考文獻 78

    [1] Sze, S. M.; Semiconductor Devices Physics and Technology (2nd Edition)

    [2] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H.Yoshimura and K. Nagayama, Mechanism of formation of two-dimensional crystals from latex particles on substrates, Langmuir 1992, 8, 3183-3190

    [3] R. Micheletto, H. Fukuda, and M. Ohtsu, A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles, Langmuir 1995,11, 3333-3336

    [4] Takashi Yamasaki and Tetsuo Tsutsui, Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres, Jpn. J. Appl. Phys. Vol.38(1999)pp. 5916-5921 Part 1, No. 10,October 1999

    [5] Yadong Yin, Yu Lu, Byron Gates, and Younan Xia, Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,, J. Am. Chem. Soc. 2001, 123, 8718-8729

    [6] Yadong Yin, Yu Lu, and Younan Xia, A Self-Assembly Approach to the Formation of Asymmetric Dimers from Monodispersed Spherical Colloids, J. Am. Chem. Soc. 2001, 123, 771-772

    [7] J. Rybczynski, U. Ebels, Large-scale, 2D arrays of magnetic nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1-6

    [8] Anjeanette D. Ormonde, Erin C. M. Hicks, Jimmy Castillo, and Richard P. Van Duyne, Nanosphere Lithography, Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy, Langmuir, 20 (16), 6927 -6931, 2004
    [9]Anjeanett D.Ormonde; P.H.D.Dissertation, Northwestern University

    [10] Christy L. Haynes and Richard P. Van Duyne, Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography, Nano Lett; Vol.3, Issue 7; 939 – 943

    [11] Xiaoyu Zhang, Erin M. Hicks, Jing Zhao, George C. Schatz, and Richard P. Van Duyne, Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography, Nano Lett.; 2005; 5(7) 1503 - 1507

    [12] Amanda J. Haes A Richard P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors, Anal Bioanal Chem (2004) 379: 920–930

    [13]W.L.Barnes, A.Dereus, ans T.W.Ebbesen, Surface Plasmon Subwavelength Optics, Nature, 424,824(2003)

    [14] Christy L. Haynes and Richard P. Van Duyne, Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics, J. Phys. Chem. B 2001, 105, 5599-5611

    [15] S.Kawata, Near-Field Optics and Surface Plasmon Polaritons,

    [16] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys. 116, 6755 (2002)

    [17]Wen-Hsien W, Dissertation, Nation Cheng Kung University

    [18]Liling Yan,KeWang,Jingshe Wu,and Lin Ye, Hydrophobicity of Model Surfaces with Loosely Packed Polystyrene Spheres after Plasma Etching,J. Phys. Chem. B 2006,110,111241-111246

    [19]黃德歡,”改變世界的納米技術”,瀛舟出版社,2002
    [20]捷東公司,SEM原理及應用
    [21] Xiaoyu Zhang,, Chanda Ranjit Yonzon, and Richard P. Van Duyneb,Nanosphere lithography fabricated plasmonic materials and
    their applications, J. Mater. Res., Vol. 21, No. 5, May 2006

    [22] Erin M. Hicks, Olga Lyandres, W. Paige Hall, Shengli Zou, Matthew R. Glucksberg, and Richard P. Van Duyne, Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography, J. Phys. Chem. C 2007, 111, 4116-4124

    [23] Alyson V. Whitney, Benjamin D. Myers, and Richard P. Van Duyne, Sub-100 nm Triangular Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography, Nano Letter. 2004,vol.4, no.8,1507-1511

    [24] Leif J. Sherry, Rongchao Jin, Chad A. Mirkin, George C. Schatz, and Richard P. Van Duyne ,Localized Surface Plasmon Resonance
    Spectroscopy of Single Silver Triangular Nanoprisms, Nano Letter. 2006, vol.6, no.9,2060-2065

    [25] Christy L. Haynes and Richard P. Van Duyne, Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography, Nano Letter. 2003, vol.3, no.7,939-943

    [26] Leif J. Sherry, Shih-Hui Chang, George C. Schatz, and Richard P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes, 2005, vol.5, no.10,2034 -2038

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE