簡易檢索 / 詳目顯示

研究生: 王怡文
Wang, Yi-Wen
論文名稱: 微接觸法、芳香官能基作用力法與噴霧流體化床法製備肌紅蛋白分子模版之比較
Comparison of micro-contact method, aromatic functional group interaction method and spray fluidized bed method for preparing myoglobin imprinted polymers
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 140
中文關鍵詞: 分子模版肌紅蛋白流體化床噴霧器電化學感測
外文關鍵詞: molecularly imprinted polymer, myoglobin, spray injection device, fluidized bed
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌紅蛋白(Myoglobin)主要分布於心肌和骨骼肌中,負責貯存氧分子與運送氧分子至肌肉組織。當心肌受損時,肌紅蛋白會迅速釋放至血液中,可做為心肌梗塞早期的標幟物,當胸痛發生後的3-6小時後,可以藉由檢驗肌紅蛋白於人體的濃度是否超過正常值來判斷心肌梗塞發生的可能性。本實驗旨在利用分子模版之技術,將高分子薄膜修飾於電極表面,利用電化學感測的方式來感測肌紅蛋白及其他競爭物。
    在模版高分子的材料選用上,第一種是延用本實驗室高選擇性的肌紅蛋白模版的配方,以甲基丙烯酸甲酯(methylmethacrylate, MMA)為單體,搭配交聯劑二(甲基丙烯酸)-四乙二酯(Tetraethyleneglycol dimethacrylate ,TEGDMA)與模版分子肌紅蛋白進行自由基加成聚合反應,以微接觸法製備於電極表面生成高分子膜,之後經由萃洗的步驟移除肌紅蛋白,於結構中留下具有模印效果之辨識性孔洞。由於聚合配方和萃洗條件已是最佳化的配方了,故在此探討電極基材的選擇。利用循環伏安法於赤血鹽和黃血鹽溶液中,可以觀察分子模版與對照組吸附前後陽極氧化電流變化的差異,改變吸附濃度,可以得到分子模版的電流變化與濃度的關係,此分子模版的最低感測濃度為100ng/ml,為人體正常值的上限。
    第二種是利用3-氨基苯基硼酸可導電(3-Aminophenylboronic acid,APBA)的單體,搭配起始劑過硫酸銨(Ammonium persulfate, APS)與模版分子肌紅蛋白在聚苯乙烯的基材進行氧化聚合,分子模版與對照組的吸附量的比值為2.86,將此單體轉而應用在電極表面,可以得到很均一的膜厚。
    由於實驗的研究團隊已証實TEGDMA和MMA對於肌紅蛋白質的辨識能力極高,為了發展成為奈米人工抗體,所以利用噴霧器將聚合液霧化成液滴,並搭配流體化床法,將原本薄膜型式的分子模版轉變為顆粒,可由掃描式電子顯微鏡和紅外光光譜儀進行分析。

    Myoglobin is a 17,000 mol wt. protein that is abundantly expressed in heart and muscle tissue. Its main function is in the transfer of oxygen from the blood to the tissues. Traumatic injury to heart tissue, such as occurs in acute myocardial infarction (AMI), leads to an increase in the amount of free myoglobin in the bloodstream, typically 3 to six hours after the onset of symptoms such as chest pain. Therefore the detection of abnormal myoglobin levels subsequent to a suspected heart attack serves as an indicator of injury to heart tissue and indicates the possibility of an AMI. The experimental objective of this work was to explore the use of molecularly imprinted polymer, formed as thin-films on electrode surfaces, for the detection of myoglobin.
    Our group has already shown that methyl methacrylate (MMA) as a functional monomer, combined with tetraethyleneglycol dimethacrylate (TEGDMA) as a crosslinker is able to mediate the recognition of myoglobin, when used to make imprinted films by radical polymerization. Here we used the same materials but instead of using glass substrates we formed the imprinted films on electrode surfaces. The objective was to form, after the extraction of template, cavities on the electrode’s surface able to ‘recognise’ and therefore re-bind the myoglobin template protein. A study was undertaken to find the best material to use to support the imprinted films.
    We have been able to show differential changes in the measured maximum anodic current, to the imprinted and control polymers, in cyclic voltammography experiments when the films, supported on the electrodes, were re-bound with myoglobin.
    In another approach we used aminophenylboronic acid (APBA) as a functional monomer to make films on the walls of 96 well polystyrene plates. We were able to show a significantly greater degree of binding to the imprinted materials than to the controls (× 2.86). Although we have been able to form uniform films as shown by SEM images, our attempts to transfer this idea for polymer formation and to form imprinted conductive APBA films on electrodes’ surfaces has only met with limited success in terms of the films recognition abilities.
    Finally, we are attempting to integrate several new technologies. We wish to make imprinted materials by forming nano-particles in a fluidized bed reactor coupled to a spray injection device. SEM images and IR spectra have been made and are included of materials produced by the spray injection device we are developing.

    目錄 中文摘要.................................Ⅰ 英文摘要.................. Ⅲ 致謝............................... Ⅴ 目錄...........................Ⅵ 表目錄......................... Ⅹ 圖目錄.................ⅩⅠ 第一章 緒論..................1 1-1 前言......................... 1 1-2 生物感測器...................2 1-3 肌紅蛋白-急性心肌梗塞的早期標幟物....................3 第二章 文獻回顧....................5 2-1 分子模版技術...................5 2-1-1分子模版原理.........5 2-1-2 分子模版之製備....10 2-1-3分子模版的型態.....14 2-1-3-1 利用總體聚合法製備分子模版................. 14 2-1-3-2 薄膜型的分子模版............................15 2-1-4 微接觸壓印法製備分子模版之起源與發展........15 2-2 生物感測器簡介..........................18 2-2-1 訊號換能器(signal transducer)..............19 2-2-1-1 光學式感測器............................20 2-2-1-2 熱量式感測器..........................20 2-2-1-3 質量式感測器.......................20 2-2-1-4電化學式感測器.........................21 2-3 導電分子之簡介....................................24 2-4 流體化床之簡介 .........................27 2-5 肌紅蛋白之簡介......................................30 2-5-1 肌紅蛋白的臨床意義.......................31 2-6 研究目的與研究架構......................33 第三章 實驗設備與步驟...............................35 3-1 藥品器材與儀器設備..........................35 3-1-1 藥品器材............................35 3-1-2 儀器設備...................38 3-2 利用微接觸法將肌紅蛋白分子模版修飾於電極之製備流程...39 3-2-1蓋玻片的清洗與改質.........40 3-2-2工作電極的製備及前處理......................42 3-2-2-1網印電極的製備....................42 3-2-2-2 導電玻璃的前處理............45 3-2-3肌紅蛋白分子模版電極製備..................46 3-2-4 分子模版電化學分析.............................48 3-2-4-1 以循環伏安法來分析模版之效能.........48 3-2-4-2 選擇性之測試............................50 3-2-4-3 感測器之重複使用性測試..........50 3-2-5肌紅蛋白模版之表面分析.............................51 3-3 利用導電高分子製備肌紅蛋白分子模版的製備流程.........52 3-3-1利用APBA於96孔盤製備肌紅蛋白分子模版.......53 3-3-2化學冷光偵測............................54 3-3-2-1化學冷光原理....................54 3-3-2-2化學冷光偵測步驟...................55 3-3-3利用導電高分子於導電玻璃上製備肌紅蛋白分子模版....57 3-3-3-1工作電極的製備.....................57 3-3-3-2 以循環伏安法來分析模版的效能.........58 3-3-3-3 選擇性的測試.........................59 3-3-3-4 肌紅蛋白模版導電高分子的表面分析.........59 3-4 利用噴霧流體化床法備肌紅蛋白分子模版的製備流程.......60 3-4-1聚合液的配方........................60 3-4-2 噴霧器..........................60 3-4-3 流體化床........................................63 3-4-4 顆粒大小的分析與物性分析..........64 第四章 結果與討論.......................65 4-1 利用微接觸法將肌紅蛋白分子模版修飾於電極....... 65 4-1-1 電極的選擇....................... 65 4-1-2 修飾於電極上的分子模版表面分析................ 70 4-1-3 修飾於電極上的分子模版厚度.................... 73 4-1-4 感測電極的效能探討...................................... 75 4-1-4-1分子模版的效能-單一吸附濃度............... 75 4-1-4-2不同吸附濃度對於分子模版效能的探討.......80 4-1-4-3不同蛋白質對於分子模版的選擇性測試......... 85 4-1-4-4肌紅蛋白分子模版電極重複使用性測試.......... 89 4-2 利用導電高分子製備肌紅蛋白分子模版................. 92 4-2-1 材料的選擇........................................... . 92 4-2-2 分子模版修飾於聚苯乙烯基材上的效能探討........94 4-2-3分子模版修飾於導電玻璃電極表面的探討........96 4-2-4 感測電極的效能探討.....................101 4-2-4-1分子模版的效能-單一吸附濃度......... 101 4-2-4-2不同蛋白質對於分子模版的選擇性測試............. 106 4-3 利用噴霧流體化床法備肌紅蛋白分子模版............109 4-3-1 噴霧器的選擇......112 4-3-2分子模版粒徑的分佈-改變溶劑與聚合液的比例....... 112 4-3-3 流體化床與噴霧器結合......... 121 4-3-4 FT-IR圖譜分析.................... 123 第五章 綜合討論..............................124 第六章 結論..........................127 第七章 研究改善與未來展望.................129 參考文獻..............131

    1. N. W. Turner, C. W. Jeans, K. R. Brain, C. J. Allender, V. Hlady and D. W. Britt, “From 3D to 2D: A Review of the Molecular Imprinting of Proteins”, Biotechnology Progress 22 (2006), 1474-1489
    2. A. Bossi, F. Bonini, A.P.F. Turner and S.A. Piletsky, “Molecularly Imprinted Polymers for the Recognition of Proteins: The State of the Art”, Biosensors and Bioelectronics 22 (2007), 1131–1137
    3. E. L. Holthoff and F. V. Bright, “Molecularly Templated Materials in Chemical Sensing”, Analytica Chimica Acta 594 (2007), 147–161
    4. Y. Ge and Anthony P.F. Turner, “Too Large to Fit? Recent Developments in Macromolecular Imprinting”, Trends in Biotechnology 26 (2008), 218-224
    5. N. M. Bergmann, N. A. Peppas, “Molecularly Imprinted Polymers with Specific Recognition for Macromolecules and Proteins”, Progress in Polymer Science 33 (2008), 271–288
    6. C. Alexander, H. S. Andersson, L. I. Andersso, R. J. Ansell, N. Kirsch, I. A. Nicholls, J. O’Mahony and M. J. Whitcombe, “Molecular Imprinting Science and Technology: A Survey of the Literature for the Years up to and Including 2003”, Journal of Molecular Recognition 19 (2006), 106–180
    7. P. N. Prasad, “Introduction to Biophotonics”, Wiley-Interscience, New Jersey(2003), Chapter 9
    8. C. I. Lin, W. P. Chu, Y. C. Wong, C. K. Chang, and Y. D. Lee, “Molecularly Imprinted Polymeric Beads for Decaffeination”, Journal of Medical and Biological Engineering 23 (2003), 53-56
    9. 張慈映, “全球心血管疾病尖端治療現況與趨勢”, 工研院IEK生醫與生活組,經濟部技術處產業技術知識服務計畫(ITIS), 2004/08/01, http://www.itis.org.tw/rptDetailFree.screen?rptidno=79FCEC8ED04C7D3048256EE80060A55C
    10. E. Antman, J. P. Bassand, W. Klein, M. Ohman, J. L. P. Sendon, L. Rydén, M. Simoons, and M. Tendera, “Myocardial Infarction Redefined—A Consensus Document of The Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction: The Joint European Society of Cardiology/ American College of Cardiology Committee”, Journal of the American College of Cardiology 36 (2000), 959-969
    11. E. Grenadier, S. Keidar, L. Kahana, G. Alpan, A. Marmur, A. Palant, “ The Roles of Serun Myoglobin, total CPK, and CK-MB isoenzyme in the acute phase of myocardial infarction”, American Heart Journal 105 (1983), 408-416
    12. A. K. Ellis, B.R. Saran, “Kinetics of Myoglobin Release and Prediction of Myocardial Myoglobin Depletion after Coronary Artery Reperfusion”, Circulation 80 (1989), 676-683
    13. J. M. McComb, E. A. McMaster, G. MacKenzie, and A. A. Adgey, “ Myoglobin and Creatine Kinase in Acute Myocardial Infarction”, British Heart Journal 51 (1984), 189-194
    14. E. Fischer, “Einfluss der Configuration auf die Wirkung der Enzyme”, Berichte der deutschen chemischen Gesellschaft 27 (1894), 2985-2993
    15. A. G. Mayes a, M. J. Whitcombeb, “Synthetic Strategies for the Generation of Molecularly Imprinted Rrganic Polymers” , Advanced Drug Delivery Reviews 57 (2005), 1742-1778
    16. P. Linus, “A Theory of the Structure and Process of Formation of Antibodies”, Journal of the American Chemical Society 62 (1940), 2643-2657
    17. F. H. Dickey, “The Preparation of Specific Adsorbents”, Proceedings of the National Academy of Sciences of the United States of America, 35 (1949), 227-229
    18. G.Wulff, A. Sarhan, “Use of Polymers with Enzyme-analogous Structures for the Resolution of Racemates”, Angewandte Chemie International Edition 11 (1972), 341-344
    19. G. Wulff, A. Sarhan, K. Zabrocki, “Enzyme-analogue Built Polymers and Their Use for the Resolution of Race Mates“, Tetrahedron Letters 44 (1973), 4329-4332
    20. G. Wulff, R. Vesper, R. Grobe-Einsler, A. Sarhan, “Enzyme-analogue Built Polymers, 4. On the Synthesis of Polymers Containing Chiral Cavities and Their Use for the Resolution ofRacemates”, Makromolekulare Chemie-Macromolecular Chemistry and Physics 178 (1977), 2799– 2816
    21. K.J. Shea, T.K. Dougherty, “Molecular Recognition on Synthetic Amorphous Surfaces—the Influence of Functional-group Positioning on the Effectiveness of Molecular Recognition”, Journal of the American Chemical Society 108 (1986), 1091–1093
    22. G. Wulff, W. Best, A. Akelah, “Enzyme-analogue Built Polymers: 17. Investigations on the Racemic Resolution of Aminoacids”, Reactive Polymers 2 (1984), 167–174
    23. R. Arshady, K. Mosbach, “Synthesis of Substrate-selective Polymers by Host–guest Polymerization”, Makromolekulare Chemie-Macromolecular Chemistry and Physics 182 (1981), 687– 692
    24. O. Norrlöw, M. Glad, K. Mosbach, “Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates”, Journal of Chromatography 299 (1984), 29– 41
    25. G. Vlatakis, L. I. Andersson, R. MÜLLER, K. Mosbach, “Drug Assay Using Antibody Mimics Made by Molecular Imprinting”, Nature 361 (1993), 645–647
    26. O. Ramström, K. Mosbach, “Synthesis and Catalysis by Molecularly Imprinted Materials”, Current Opinion in Chemical Biology 3 (1999), 759–764
    27. M. J. Whitcombe, M. E. Rodriguez, P. Villar, E. N. Vulfson, “A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting—Synthesis and Characterization of Polymeric Receptors for Cholesterol”, Journal of the American Chemical Society 117 (1995), 7105–7111
    28. A. G. Cormack, A. Z. Elorza, “Molecularly Imprinted Polymers: Synthesis and Characterisation“, Journal of Chromatography B 804 (2004), 173-182
    29. A. Kumar, G. M. Whitesides, “Features of Gold Having Micrometer to Centimeter Dimensions Can Be Formed Through a Combination of StamIpng with an Elastomeric Stamp and an Alkanethiol 'Ink' Followed by Chemical Etching”, Applied Physics Letters, 63 (1993), 2002-2004
    30. A. Kumar, H. A. Biebuyck, G. M. Whitesides, “Patterning SAMs: Applications in Materials Science”, Langmuir 10 (1994), 1498-1511
    31. J. L. Wilbur, E. Kim, Y. Xia, and G. M. Whitesides, “Lithographic Molding: A Convenient Route to Structures with Sub-micrometer Dimensions”, Advanced Materials : the Newsletter of High Performance 7 (1995), 649-652
    32. J. L. Wilbur, H. A. Biebuyck, J. C. MacDonald, G. M. Whitesides, “Scanning Force MicroscoIpes Can Image Patterned Self-Assembled Monolayers”, Langmuir 11 (1995), 825-831
    33. R. J. Jackman, J. L. Wilbur, G. M. Whitesides, “Fabrication of Submicrometer Features on Curved Substrates by Microcontact Printing”, Science 269 (1995), 664-666
    34. J. L. Wilbur , A. Kumar , H. A. Biebuyck , E. Kim , G. M. Whitesides, “Microcontact Printing of Self-assembled Monolayers: Applications in Microfabrication”, Nanotechnology 7 (1996), 452-457
    35. A. Bernard, B. Hens, E. Delamarche, “Microcontact Printing of Proteins”, Advanced Materials 12 (2000), 1067-1074
    36. V. N. Morozov, T. Y. Morozova, “Electrospray Deposition as a Method for Mass Fabrication of Mono- and Multicomponent Microarrays of Biological and Biologically Active Substances”, Analytical Chemistry 71 (1999), 3110-3117
    37. M. Maeda, R. Barsch, “Molecular and Ionic Recognition with Imprinted Polymers”, American Chemical Society, Washington, DC(1988),Chapter1-2
    38. A. L. Hillberg, K. R. Brain, C. J. Allender, “Molecular Imprinted Polymer Sensors: Implications for Therapeutics”, Advanced Drug Delivery Reviews 57 (2005), 1875–1889
    39. 謝振傑, “光纖生物感測器” ,物理雙月刊廿八卷四期(2006), 704-710
    40. S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano and I. Karube, “Atrazine Sensing by Molecularly Imprinted Membranes”, Biosensors and Bioelectronics 10 (1995), 959-964
    41. K. Haupt, K. Mosbach, “Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors”, Chemical Reviews 100 (2000), 2495- 2504
    42. L. Andersson, C. F. Mandenius, K. Mosbach, “Studies on Guest Selective Molecular Recognition on an Octadecyl Silylated Silicon Surface Using Ellipsometry“, Tetrahedron Letters 29 (1988), 5437-5440
    43. H. S. Ji, S. McNiven, K. Ikebukuro, I. Karube, “Selective Piezoelectric Odor Sensors Using Molecularly Imprinted Polymers“, Analytica Chimica Acta 390 (1999), 93-100
    44. E. Hedborg, F. Winquist, I. Lundström, L. I. Andersson, K. Mosbach, “Some Studies of Molecularly-imprinted Polymer Membranes in Combination with Field-effect Devices“, Sensors and Actuators A 37-38 (1993), 796-799
    45. T. L. Panasyuk, V. M. Mirsky, S. A. Piletsky, O. S. Wolfbeis, “Electropolymerized Molecularly Imprinted Polymers as Receptor Layers in Capacitive Chemical Sensors”, Analytical Chemistry 71 (1999), 4609- 4613
    46. T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, E. A. Slinchenko, L. M. Sergeeva, T. L. Panasyuk, A. V. Elskaya, “Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes“, Analyst 124 (1999), 331-334
    47. F. L. Dickert, P. Forth, P. Lieberzeit, “Molecular imprinting in chemical sensing -Detection of aromatic and halogenated hydrocarbons as well as polar solvent vapors”, Fresenius' Journal of Analytical Chemistry 360 (1998),759-762
    48. C. Malitesta, I. Losito, P. G. Zambonin, “Molecularly Imprinted Electrosynthesized Polymers: New Materials for Biomimetic Sensors”, Analytical Chemistry 71 (1999), 1366-1370
    49. K. Haupt, K. Noworyta, W. Kutner, “Imprinted Polymer-based Enantioselective Acoustic Sensor Using a Quartz Crystal Microbalance“, Analytical Communications 36 (1999), 391-394
    50. D. Kriz, O. Ramström, A. Svensson, K. Mosbach, “A Biomimetic Sensor Based on a Molecularly Imprinted Polymer as a Recognition Element Combined with Fiber-Optic Detection”, Analytical Chemistry 67 (1995), 2142-2144
    51. F. L. Dickert, M. Tortschanoff, W. E. Bulst, G. Fischerauer, “Molecularly Imprinted Sensor Layers for the Detection of Polycyclic Aromatic Hydrocarbons in Water”, Analytical Chemistry 71 (1999), 4559-4563
    52. D. Kriz, K. Mosbach, “Competitive Amperometric Morphine Sensor Based on an Agarose Immobilised Molecularly Imprinted Polymer“, Analytica Chimica Acta 300 (1995), 71-75
    53. R. Levi, S. McNiven, S. A.Piletsky, S. H. Cheong, K. Yano, I. Karube, “Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers”, Analytical Chemistry 69 (1997), 2017-2021
    54. G. H. Chen, Z. B. Guan, C. T. Chen, L. T. Fu, V. Sundaresan, F. H. Arnold, “A glucose-sensing polymer”, Nature Biotechnology 15 (1997), 354-357
    55. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x“. Journal of the Chemical Society, Chemical Communications 16 (1977), 578-579
    56. U. Lange, N. V. Roznyatovskaya1, V. M. Mirsky, “Conducting Polymers in Chemical Sensors and Arrays“, Analytica Chimica Acta 614 (2008), 1-26
    57. A. G. MacDiarmid, S. K. Manohar, J. C. Masters, Y. Sun, H. Weis and A. J. Epstein, “Polyaniline: Synthesis and Properties of Pernigraniline Base“, Synthetic Metals 41 (1991), 621-626
    58. K. Tzou and R. V. Gregory, “Kinetic study of the chemical polymerization of aniline in aqueous solutions“, Synthetic Metals 47 (1992), 267-277
    59. D. Kunii, O. Levenspiel, “Fluidization Engineering”, Butterworth-Heinemann publishing, Inc. (1991), 2nd Ed
    60. D. Geldart, “Gas Fluidization Technology”, John Wiley and Sons (1986)
    61. C. Y Wen, Y. H. Yu, “Mechanics of Fluidization”, Chemical Engineering and Processing Symposium Series 62 (1966), 100-111
    62. D. Geldart, A. R. Abrahamsen, “Fluidization of Fine Porous Powders”, Chemical Engineering and Processing Symposium Series 77(1981),160
    63. D. Geldart, M. Rhodes , “Developments in Fluidisation”, The Chemical Engineer 422 (1986), 30-32
    64. A. Arkhipov, R. Braun, Y. Yin, “Case Study: Myoglobin”, Beckman Institute for Advanced Science and Technology, 2008/02/01, http://www.ks.uiuc.edu/Training/CaseStudies/pdfs/myoglobin.pdf
    65. W. S. Caughey, G. A. Smythe, D. H. O'Keeffe, J. E. Maskasky, M. I. Smith, “Heme A of Cytochrome C Oxicase. Structure and Properties: Comparisons with Hemes B, C, and S and Derivatives”, J. Biol. Chem. 250 (1975), 7602–7622
    66. 福島醫檢資訊網, http://www.supermt.com.tw/MTindex-1.htm
    67. 中華檢驗網, http://www.chinalabnet.co?id=830&cid=m/show.aspx89
    68. A. G. Engel, B. Q. Banker, A. S. Penn, “Myoglobinuria”, Myology. Basic and Clinical, McGraw-Mill Book Co, New York (1986), 1785-1805
    69. H. Y. Lin, J. Rick, T. C. Chou, “Optimizing the Formulation of a Myoglobin Molecularly Imprinted Thin-film Polymer-formed Using a Micro-contact Imprinting Method“, Biosensors and Bioelectronics 22 (2007), 3293-3301
    70. P. C. Chou, J. Rick, T. C. Chou, “C-reactive Protein Thin-film Molecularly Imprinted Polymers Formed Using a Micro-contact Approach“, Analytica Chimica Acta 542 (2005), 20-25
    71. 陳筱淇, “The Study of Fabricating Lysozyme-imprinted Polymers by Noval Microcontact Printing Method”, 碩士論文, 國立成功大學, 2005
    72. 陳威志, “To Design the Creatinine Imprinted Polymers Based on the Information From Microcalorimeter”, 碩士論文, 國立成功大學, 2004
    73. 周佩蓁, “Development a Micro-contact Imprinting Technology to Rapidly Detect Inflammation”, 碩士論文, 國立成功大學, 2005
    74. C.S. Chou, C. C. Liu, “Development of a Molecular Imprinting Thick Film Electrochemical Sensor for Cholesterol Detection”, Sensors and Actuators B 110 (2005), 204–208
    75. A. J. Bard and L. R. Faulkner, “Electrochemical Methods,” 2nd ed., John Wiley & Sons, Inc., New York (2001)
    76. A. Bossi, S. A. Piletsky, E. V. Piletska, P. G. Righetti, A. P. F. Turner, “Surface-Grafted Molecularly Imprinted Polymers for Protein Recognition”, Analytical Chemistry 73 (2001), 5281-5286
    77. I. Surugiu, B. Danielsson, L. Ye, K. Mosbach, K. Haupt, “Chemiluminescence Imaging ELISA Using an Imprinted Polymer as the Recognition Element Instead of an Antibody”, Analytical Chemistry 73 (2001), 487-491
    78. N. W. Turner, X. Liu, S. A. Piletsky, V. Hlady, D. W. Britt, “Recognition of Conformational Changes in β-Lactoglobulin by Molecularly Imprinted Thin Films” , Biomacromolecules 8 (2007), 2781-2787
    79. C. Dodeigne, L. Thunus, R. Lejeume, “Chemiluminescence as Diagnostic Tool. A review“, Talanta 51 (2000), 415-439
    80. A. Navas Díaz, F. García Sánchez, J. A. GonzáLez García, “Enhancement and Inhibition of Luminol Chemiluminescence by Phenolic Acids”, Journal of Bioluminescence and Chemiluminescence 10 (1995), 175-184
    81. M. Nakamura, S. Nakamura, “One- and Two-Electron Oxidations of Luminol by Peroxidase Systems“ , Free Radical Biology and Medicine 24 (1998), 537-544
    82. J. Rick, T. C. Chou, “Amperometric Protein Sensor – Fabricated as a Polypyrrole, Poly-aminophenylboronic Acid Bilayer”, Biosensors and Bioelectronics 22 (2006), 329-335
    83. N. Pe´rez, M. J. Whitcombe, E. N. Vulfson, “Molecularly Imprinted Nanoparticles Prepared by Core-Shell Emulsion Polymerization”, Journal of Applied Polymer Science 77 (1999), 1851-1859
    84. C. Yang, H. Liu, Y. Guan, J. Xing, J. Liu, G. Shan, “Preparation of Magnetic Poly (methylmethacrylate– divinylbenzene– glycidylmethacrylate) Microspheres by Spraying Suspension Polymerization and Their Use for Protein Adsorption, Journal of Magnetism and Magnetic Materials 293 (2005), 187-192
    85. R. A. Graves, D. Poole, R. Moiseyev, L. A. Bostanian, T. K. Mandal, “Encapsulation of Indomethacin Using Coaxial Ultrasonic Atomization Followed by Solvent Evaporation”, Drug Development and Industrial Pharmacy 34 (2008), 419-426
    86. X. D. Zhou, S. C. Zhang W. Huebner, P. D. Ownby, “Effect of the Solvent on the Particle Morphology of Spray Dried PMMA” , Journal of Materials Science 36 (2001), 3759-3768

    無法下載圖示 校內:2107-08-25公開
    校外:2107-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE