簡易檢索 / 詳目顯示

研究生: 劉書羽
Liu, Shu-Yu
論文名稱: 踢除琥珀酸脫氫酶的腸出血性大腸桿菌O157:H7可能透過亮氨酸反應蛋白來上調LEE基因的表達
Deletion of sdhA upregulate LEE genes expression possibly via Lrp in enterohemorrhagic Escherichia coli O157: H7
指導教授: 陳振暐
Chen, Jenn-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 52
中文關鍵詞: 腸出血性大腸桿菌O157:H7LEE基因第三型分泌系統琥珀酸脫氫酶亮氨酸反應性調節蛋白
外文關鍵詞: Enterohemorrhagic Escherichia coli (EHEC) O157: H7, LEE genes, Type three secretion system, SdhA, Lrp
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸出血性大腸桿菌(Enterohemorrhagic Escherichia coli, EHEC)O157:H7是一種會引起出血性腹瀉和溶血性尿毒綜合徵(HUS)的病原體。感染案例主要發生在美國、加拿大、日本和歐洲的其他工業化國家。因為抗生素治療可能會惡化EHEC感染的情況,因此發現新目標來開發新藥是非常重要的。在先前的研究中發現與EDL933菌株相比,其ΔsdhA突變體的感染提升了秀麗隱桿線蟲的存活率。SdhA是琥珀酸脫氫酶(succinate dehydrogenase)的其中一個次單元,SdhA參與在中樞代謝途徑TCA循環和電子傳遞鏈中。這意味著中斷TCA循環將影響毒力因子的基因表達,除此之外也表明SdhA是藥物開發中可以做為潛在靶標。有趣的是,ΔsdhA突變體中毒力因子LEE基因的表達已被證明會上調。由LEE基因所轉譯的第三型分泌系統(Type three secretion system, T3SS)使EHEC粘附在宿主腸上皮細胞並在宿主腸上形成A/E lesion的重要因子。在本研究中,我們試圖找出哪個主要因素影響ΔsdhA突變體中LEE基因的表達。首先,我們使用啟動子活性測定的方式想要找出哪個因子可能在ΔsdhA突變體中扮演上調LEE基因表達的主要角色。我們發現Lrp可能在ΔsdhA突變體中起上調LEE表達的作用。 Lrp是亮氨酸反應性調節蛋白(Leucine-responsive regulatory protein),其在腸出血性大腸桿菌中可以藉由感應丁酸的濃度在通過LeuO和Pch來導致LEE基因上調。接著,我們想藉由突變lrp來確認Δlrp突變體中的LEE表達在ΔsdhAΔlrp雙重突變體中是相同的,但是與野生型相比時EHEC的lrp突變下調LEE基因,這結果不論是在Δlrp突變體或是在ΔsdhAΔlrp雙重突變體中都有相同現象。因為EHEC不會產生丁酸,所以必然有其他分子影響Lrp活性。因此我們使用各別提供有2.5mM琥珀酸鹽(succinate)和富馬酸鹽(fumarate)在M9培養基來檢查是否影響ΔsdhA突變體中的lrp和LEE1啟動子活性。我們發現富馬酸鹽會略微影響lrp啟動子的活性,但不影響ΔsdhA菌株中的LEE1啟動子。這表明富馬酸鹽可能不是調節Lrp和LEE1的主力。除此之外,我們還發現在ΔsdhA菌株中的leuO啟動子的活性遠高於WT。總結,我們知道sdhA的缺失會上調LEE基因的表達並改變lrp和leuO的表達,這個改變並不是因為富馬酸鹽或琥珀酸鹽。因此我們認為在ΔsdhA菌株中存在影響Lrp上調的其他因素,然後LEE基因表達的上調與ΔsdhA菌株中的Lrp-LeuO途徑相關。

    Enterohemorrhagic Escherichia coli (EHEC) O157: H7 is a pathogen that can cause bloody diarrhea and hemolytic uremic syndrome (HUS). The cases mainly occur in the U.S., Canada, Japan and other industrialized countries in Europe. Because antibiotic treatment may enhance the severity of EHEC infection, therefore, it is important to discover new targets to develop new drugs. In a previous study, the feeding of EHEC ΔsdhA strain increased the survival rate of Caenorhabditis elegans compared with WT strain. SdhA is a subunit of succinate dehydrogenase (SDH) involved in the central metabolism pathway, TCA cycle and electron transport chain. Thus, disruption of TCA cycle will affect virulence factors expression and SdhA is therefore a promising target for drug development. Interestingly, the expression of the locus of enterocyte effacement (LEE) genes in ΔsdhA strain was upregulated in other studies. Type three secretion system (T3SS), encoded by LEE pathogenicity island, is an important factor for EHEC to adhere directly to host intestinal epithelium and to form attaching and effacing lesions (A/E lesions). In this study, we try to clarify which major factor affect LEE genes expression in ΔsdhA strain. First, we used promoter activity assay trying to find a factor might play a major role that upregulates LEE genes expression in ΔsdhA strain. We found that Lrp might play a role to upregulate LEE expression in ΔsdhA strain. Lrp is a Leucine-responsive regulatory protein that senses butyrate and can also induce LEE genes upregulation through LeuO and Pch in EHEC. We mutated lrp to test LEE genes expression in Δlrp strain will be identical in ΔsdhAΔlrp strain. We confirmed that Δlrp strain and ΔΔlrp strain will downregulate expression of LEE genes while comparing with WT. Because EHEC would not produce butyrate but Lrp still has activity. So we wonder which metabolite affect Lrp. Then, we used M9 medium supplied with 2.5 mM succinate and fumarate respectively to check which supplement could affect lrp promoter activity in ΔsdhA strain. We found out that fumarate will slightly affect the activity of lrp promoter but did not affect LEE1 promoter in ΔsdhA strain. This indicates that fumarate is not the major role to regulate Lrp. To further search, we found that activity of leuO promoter is higher than WT. In conclusion, we know that deletion of sdhA will upregulate LEE genes expression and alter lrp and leuO expression. The alteration is not because of fumarate or succinate. So we suggest there must be other molecules affect Lrp upregulate in ΔsdhA strain. Then, upregulation of LEE genes expression is associated with Lrp-LeuO pathway in ΔsdhA strain.

    Abbreviation I Abstract II 摘要 IV Acknowledgement VI Chapter 1. Introduction 1 Chapter 2. Method and Material 4 2.1 Bacterial strains, plasmids and experimental preparation 4 2.2 Type three secretion system gene expression quantitative analysis 5 2.3 Promoter activity assay 6 2.4 Mutation of lrp 7 2.5 Remove antibiotic resistance gene 8 2.6 Adhesion assay 9 2.7 Succinate and fumarate supplied reporter assay 10 2.8 Lrp complementary assay 11 2.9 Lrp overexpression assay 11 2.10 Western blotting 12 Chapter 3. Result 15 3.1 LEE genes expression in EHEC ΔsdhA strain is higher than wild type 15 3.2 Lrp may play a role in upregulating LEE expression in ΔsdhA strain 15 3.3 Mutation of lrp downregulated LEE expression 16 3.4 Fur-iron complex did not play the repressor in LEE genes expression. 17 3.5 Fumarate slightly influences lrp promoter activity 18 3.6 Expression of LeuO is higher in ΔsdhA strain 19 3.7 Complementary of Lrp in lrp mutant affects LEE1 expression 20 3.8 Adhesion of ΔsdhA mutant has no difference while comparing with WT 20 Chapter 4. Discussion 21 References 25 Supplementary 49

    1. Pacheco, A.R. and V. Sperandio, Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol, 2012. 2: p. 81.
    2. Karch, H., P.I. Tarr, and M. Bielaszewska, Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol, 2005. 295(6-7): p. 405-18.
    3. Melton-Celsa, A.R., Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol Spectr, 2014. 2(4): p. EHEC-0024-2013.
    4. Tarr, P.I., C.A. Gordon, and W.L. Chandler, Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. The Lancet, 2005. 365(9464): p. 1073-1086.
    5. Gaytan, M.O., et al., Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol, 2016. 6: p. 129.
    6. Berdichevsky, T., et al., Ler is a negative autoregulator of the LEE1 operon in enteropathogenic Escherichia coli. J Bacteriol, 2005. 187(1): p. 349-57.
    7. McKee ML1, O.B.A., Truncated enterohemorrhagic Escherichia coli (EHEC) O157:H7 intimin (EaeA) fusion proteins promote adherence of EHEC strains to HEp-2 cells. Infect Immun. , 1996 64(6):: p. 2225-33.
    8. Tchawa Yimga, M., et al., Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun, 2006. 74(2): p. 1130-40.
    9. Alteri, C.J., S.N. Smith, and H.L. Mobley, Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog, 2009. 5(5): p. e1000448.
    10. Kuo, C.J., et al., A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli. Cell Death Dis, 2018. 9(3): p. 381.
    11. Iverson, T.M., E. Maklashina, and G. Cecchini, Structural basis for malfunction in complex II. J Biol Chem, 2012. 287(42): p. 35430-8.
    12. Connolly, J.P., B.B. Finlay, and A.J. Roe, From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic Escherichia coli. Front Microbiol, 2015. 6: p. 568.
    13. Nakanishi, N., et al., Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology, 2009. 155(Pt 2): p. 521-30.
    14. Fernandez-Brando, R.J., et al., Type III Secretion-Dependent Sensitivity of Escherichia coli O157 to Specific Ketolides. Antimicrob Agents Chemother, 2016. 60(1): p. 459-70.
    15. Takao, M., H. Yen, and T. Tobe, LeuO enhances butyrate-induced virulence expression through a positive regulatory loop in enterohaemorrhagic Escherichia coli. Mol Microbiol, 2014. 93(6): p. 1302-13.
    16. Xianhua Yin, Y.F., Roger Wheatcroft, James Chambers, Joshua Gong, Carlton L. Gyles, Adherence of Escherichia coli O157:H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions. The Canadian Journal of Veterinary Research, 2011;. 75:: p. 81–88.
    17. Vikram A, J.P., Pillai SD, Patil BS. , Isolimonic acid interferes with Escherichia coli O157:H7 biofilm and TTSS in QseBC and QseA dependent fashion. BMC Microbiol., 2012. 2012: p. 12:261.
    18. Zhu, J., et al., Enhancement of precursor amino acid supplies for improving bacitracin production by activation of branched chain amino acid transporter BrnQ and deletion of its regulator gene lrp in Bacillus licheniformis. Synth Syst Biotechnol, 2018. 3(4): p. 236-243.
    19. Yu, Y.C., et al., A putative lytic transglycosylase tightly regulated and critical for the EHEC type three secretion. J Biomed Sci, 2010. 17: p. 52.
    20. Sperandio, V., SdiA sensing of acyl-homoserine lactones by enterohemorrhagic E. coli (EHEC) serotype O157:H7 in the bovine rumen. Gut Microbes, 2010. 1(6): p. 432-5.
    21. Sheng, H., et al., SdiA aids enterohemorrhagic Escherichia coli carriage by cattle fed a forage or grain diet. Infect Immun, 2013. 81(9): p. 3472-8.
    22. Yang, B., et al., Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nat Commun, 2015. 6: p. 6592.
    23. Troxell, B. and H.M. Hassan, Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol, 2013. 3: p. 59.
    24. Tobe, T., et al., Antisense transcription regulates the expression of the enterohemorrhagic Escherichia coli virulence regulatory gene ler in response to the intracellular iron concentration. PLoS One, 2014. 9(7): p. e101582.
    25. Iyoda, S. and H. Watanabe, Positive effects of multiple pch genes on expression of the locus of enterocyte effacement genes and adherence of enterohaemorrhagic Escherichia coli O157 : H7 to HEp-2 cells. Microbiology, 2004. 150(Pt 7): p. 2357-571.
    26. Tobe, T., N. Nakanishi, and N. Sugimoto, Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. Infect Immun, 2011. 79(3): p. 1016-24.
    27. Pasini, E., et al., Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. Nutrients, 2018. 10(4).
    28. Chen CF, L.J., Korovine M, Shao ZQ, Tao L, Zhang J, Newman EB., Metabolic regulation of lrp gene expression in Escherichia coli K-12. Microbiology., 1997. 143 ( Pt 6): p. 2079-84.
    29. Lussey-Lepoutre, C., et al., Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun, 2015. 6: p. 8784.
    30. Gaupp, R., et al., Advantage of upregulation of succinate dehydrogenase in Staphylococcus aureus biofilms. J Bacteriol, 2010. 192(9): p. 2385-94.
    31. Shimada, T., et al., Expanded roles of leucine-responsive regulatory protein in transcription regulation of the Escherichia coli genome: Genomic SELEX screening of the regulation targets. Microb Genom, 2015. 1(1): p. e000001.
    32. Van Houdt, R., et al., N-acyl-L-homoserine lactone signal interception by Escherichia coli. FEMS Microbiol Lett, 2006. 256(1): p. 83-9.
    33. Rosano, G.L. and E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 2014. 5: p. 172.
    34. McWilliams, B.D. and A.G. Torres, Enterohemorrhagic Escherichia coli Adhesins. Microbiology Spectrum, 2014. 2(3).
    35. Cleary, J., et al., Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology, 2004. 150(Pt 3): p. 527-38.
    36. Ambartsoumian G1, D.A.R., Lin RT, Newman EB., Altered amino acid metabolism in lrp mutants of Escherichia coli K12 and their derivatives. Microbiology., 1994. 140 ( Pt 7):: p. 1737-44.

    下載圖示 校內:2024-12-30公開
    校外:2024-12-30公開
    QR CODE