簡易檢索 / 詳目顯示

研究生: 翁千雁
Weng, Chien-Yen
論文名稱: 新穎磁性金屬硒化物之合成與物理性質
Syntheses and Physical Properties of a New Magnetic Metal Selenide
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 52
中文關鍵詞: 過渡金屬硒化物反鐵磁性物質紅外光非線性材料
外文關鍵詞: transition metal chalcogenides, antiferromagnetic, infrared NLO materials
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用高溫固態搭配助熔長晶法,成功合成出新穎結構之過渡金屬硫族化合物。該化合物結構具有非對稱中心,晶系為Orthorhombic Cmc2-¬1,晶格常數a = 9.3412(2) Å,b = 44.6666(10) Å,c = 12.5496(3) Å。結構由SbSe5四角錐和SbSe6八面體以共用邊相連接以及FeSe4四面體二聚體和單體透過扭曲SbSe6相連接,沿[100]方向延伸排列形成兩低維度鏈狀,兩結構單元再交錯排列形成三維結構,而Ba2+陽離子則填充在骨架之孔隙中以維持電荷平衡。結構中FeSe4四面體之間距及鍵結情況與化合物整體呈現之磁性行為有關。
    磁性量測方面,由磁化率倒數對溫度作圖擬和Curie-Weiss Law 得到C = 13.193 emu K mol-1,θ =-98.644 K,θ為極負值推測化合物內部自旋交互作用以反鐵磁較為明顯。由變磁場磁化強度圖在14 K以下仍有磁滯現象具淨磁矩,而磁場加到最大 (7 Tesla) 所測得化合物飽和磁化強度值1.193 µB仍遠小於理論磁化強度值13 µB,推測為化合物內部磁矩排列有spin-canting antiferromagnetic情形。能隙由紫外-可見光光譜圖測得為1.54 eV,且在紅外光波段有良好穿透度,加上結構由FeSe4四面體及SbSe6扭曲八面體堆疊排列,為非對稱中心結構且可能具有一定程度之極性,因此後續將進行化合物在紅外光波段之二倍頻轉換訊號強度的量測。

    A new metal chalcogenide was synthesized by a solid-state reaction at 850oC. This structure crystallizes in a noncentrosymmetric space group of orthorhombic Cmc21 with cell parameters a = 9.3412(2) Å, b = 44.6666(10) Å, c = 12.5496(3) Å and Z=4. The first building unit Ⅰ in the structure is formed by edge-sharing SbSe5 and SbSe6 polyhedron. The second building unit Ⅱ conatins edge-sharing Fe2Se6 dimer, isolated FeSe4 tetrahedra and distorted SbSe6 polyhedron, which are arranged alternatively to form an one-dimensional chain. Therefore, the building units Ⅰ and Ⅱ compose a three-dimensional framework with Ba2+ cations filled in the tunnels. The temperature dependent susceptibilities and the field dependent susceptibilities of this metal chalcogenide indicate an interesting spin-canting antiferromagnetic interaction beginning at 14K. The band gaps measured by UV-vis-NIR spectura displays the value of ~1.54eV. This new material is transparent in the infrard range, which study of second harmonic generations is undertaken.

    摘要 I Abstract II 謝誌 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 第二章 過渡金屬硫族化合物之合成與鑑定 10 2–1 合成方法 10 2–2 單晶X光繞射分析 12 2–3 能量散佈光譜儀測量 15 2–4 粉末X光繞射分析 16 2–5 紫外-可見-近紅外光光譜儀測量 17 2–6 超導量子磁化干涉儀測量 18 2–7 化學分析電子光譜儀測量 19 2–8 物理性質測量系統量測 20 2–9 傅立葉轉換紅外線光譜儀測量 21 2-10 非線性性質鑑定 21 第三章 結構與性質探討 22 3–1 晶體結構 22 3–2 純相探討及能隙測量 30 3–3 磁性行為探討 32 3–4 透光範圍檢測及倍頻量測探討 39 第四章 結論 42 參考文獻 43 附錄 45

    [1] V. A. Chitta, M. Z. Maialle, S. A. Leao, M. H. Degani. Appl. Phys. Lett. 1999, 74, 2845-2847.
    [2] Zutic, I.; Fabian, J.; Das Sarma, S. Rev. Mod. Phys.2004, 76, 323-410.
    [3] Zutic, I.; Fabian, J.; Erwin, S. C. IBM J. Res. Dev 2006, 50, 121-139.
    [4] Jamet M., Barski A., Devillers T., Poydenot V., Dujardin R., Bayle-Guillemaud P., Rothman J., Bellet-Amalric E., Marty A., Cibert J., Mattana R., Tatarenko S. Nat. Mater. 2006, 5, 653-659.
    [5] Xingxing Li and Jinlong Yang. National Science Review 2016, 3, 365–381.
    [6] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, Appl. Phys. Lett. 1996, 69, 363-365.
    [7] Buerger, M. J.; Hahn, T. Am. Mineral. 1955, 40, 226-238.
    [8] Leone P., Charlotte, D. -B., Andre D., Moelo Y. Phys Chem Minerals. 2008, 35, 201–206.
    [9] Andrew F. May et al., Physical Review B. 2017, 95, 174440-174450.
    [10] P. F. P. Poudeu et al., Angew. Chem. 2010, 122, 10173 –10177.
    [11] P. F. P. Poudeu et al., Eur. j.org. chem. 2011, 3969-3977.
    [12] P. F. P. Poudeu et al., J. Am. Chem. Soc. 2012, 134, 14033-14042.
    [13] P. F. P. Poudeu et al., J. Am. Chem. Soc.2015, 137, 691-698.
    [14] Matsushita, Y.; Ueda, Y. Inorg. Chem. 2003, 42, 7830–7838.
    [15]
    P.F.P. Poudeu, N. Takas, C. Anglin, J. Eastwood, A. Rivera
    J. Am. Chem. Soc. 2010, 132 , 5751-5760.
    [16] M. Zhou, W. Yin, F. Liang, A. Mar, Z. Lin, J. Yao, Y. Wu, J. Mater. Chem. C, 2016, 4, 10812-10819.
    [17] K. Feng, W. D. Wang, R. He, L. Kang, W. L. Yin, Z. S. Lin, J. Y. Yao, Y. G. Shi and Y. C. Wu, Inorg. Chem., 2013, 52, 2022–2028.
    [18] Geng, L.; Cheng, W.-D.; Zhang, H.; Lin, C.-S.; Zhang, W.-L.; Li, Y.-Y.; He, Z.-Z.Inorg. Chem. 2011, 50, 2378–2384
    [19] Jian Wang, Joshua T. Greenfield, Kirill Kovnir. Journal of Solid State Chemistry., 2016, 242, 22-27.
    [20] Goodenough, J. J. Phys. Chem. Solids 1958, 6, 287–297.
    [21] Goodenough, J. Phys. ReV. 1955, 100, 564–573.
    [22] Kanamori, J. J. Phys. Chem. Solids 1959, 10, 87–98.
    [23] George M. Sheldrick. Acta Cryst. 2015, C71, 3–8.
    [24] Kerber, S. J.; Barr, T. L.; Mann, G. P.; Brantley, W. A.; Papazoglou, E.; Mitchell, J. C. JMEPEG. 1998, 7, 329-333.
    [25] A. R. West, Solid State Cemistry and Its Applications; John Wiley & sons: Chichester, 1984.
    [26] O’Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203-283.
    [27] M. C. Chen, L. M. Wu, H. Lin, L. J. Zhou, L. Chen. J. Am. Chem. Soc. 2012, 134, 6058−6060.
    [28] Hua Lin, Ling Chen, Liu-Jiang Zhou, Li-Ming Wu J. Am. Chem. Soc. 2013, 135, 12914−12921.
    [29] Hua Lin, Yi Liu, Liu-Jiang Zhou, Hua-Jun Zhao, Ling Chen. Inorg. Chem. 2016, 55, 4470−4475.

    下載圖示 校內:2025-07-19公開
    校外:2025-07-19公開
    QR CODE